The Dynamics of Policy Complexity

Keiichi Kawai, Ruitian Lang, Hongyi Li

August 2016

Badly-designed systems

- Excessive complexity in organizations and systems
 - Public policy
 - * Organizational bureaucracies
 - * Software development
- This paper complexity due to:
 - * Frictions in design process
 - * Conflict between designers

Definition

Kludge: an ad-hoc modification to an existing system that is functional but inefficient.

Obamacare: a kludge

US Affordable Care Act of 2010 ("Obamacare")

- Patches over existing private insurance system
 - Individual mandate, coverage requirements, etc
- Excessive complexity due to 'plugging gaps' design
- Entanglement w/ existing system creates frictions:
 - Once enacted, makes existing system even more entrenched

Kludges

Key elements of kludges:

- interdependencies
- incremental change
- external shocks (Ely 2011, Kolitilin and Li WP), or
- conflict (this paper)

This paper: policymaking in setting of political conflict

- Focus on long-run outcome w/ myopic players
- Conflict + Interdependence \Rightarrow persistent complexity
- Complexity begets complexity:
 - * simple policies remain simple
 - complex policies grow more complex

Preview

Comparative statics: persistent complexity iff

- Strong, extremist ideological preferences
- Relatively equal political power
- Severe institutional frictions

Preview

With non-myopic players, additional effects:

- Intentional Complexity: " building a moat"
- Strategic extremism: "shifting the goalposts"
- Lesson: increasing discount factor exacerbates kludge

Lit review

- Kludges: Ely (2011), Kolotilin and Li (WP)
- Rule Development: Ellison and Holden (2013)
- Policy Politics: Bonatti and Rantakari (2015), Callander and Hummel (2014)

Outline

Intro

2 Model

3 One-Player Game

- Oynamics of Conflict
- 5 Strategic Effects

Conclusion

Model

- Continuous time, $t \ge 0$.
- Policy $\Pi(t)={\rm continuum}$ of infinitesimal, equal-weighted elements π
- Each element has a direction: either northern (n) or southern (s)
- Policy position is difference between masses of northern vs southern elements:

$$y(t) = m_n(t) - m_s(t)$$

• Policy complexity is total mass of elements:

$$x(t) = m_n(t) + m_s(t)$$

Policy Diagram: Examples

Policy with only one type of element is simple (e.g., Π_1 and $\Pi_2)$

Mode

Policy Preferences

- 2 players, (N)orth and (S)outh
- Each player *I* cares about policy complexity (*x*) and position (*y*):

$$V_{I,t} = \int_{\tau=t}^{\infty} e^{-\rho_I \tau} u_I(\tau) d\tau,$$

$$u_I(\tau) = -\zeta_I |y_I - y(\tau)| - x(\tau).$$

- y₁ is player I's ideal position
- ζ_I is player *I*'s ideological *zeal*

$$y_N>0, y_S<0, \ \zeta_N, \ \zeta_S>1$$

Mode

Policy Preferences

- 2 players, (N)orth and (S)outh
- Each player *I* cares about policy complexity (*x*) and position (*y*):

$$V_{I,t} = \int_{\tau=t}^{\infty} e^{-\rho_I \tau} u_I(\tau) d\tau,$$

$$u_I(\tau) = -\zeta_I |y_I - y(\tau)| - x(\tau).$$

- y₁ is player I's ideal position
- ζ_I is player *I*'s ideological *zeal*

$$y_{m N}>$$
 0, $y_{m S}<$ 0, $\zeta_{m N},\ \zeta_{m S}>1$

Policy Diagram: Preferences

Interdependencies

- Undirected network over elements in $\Pi(t)$
- New elements uniformly randomly form links with existing elements:
- Each new element forms κ links per unit mass of existing elements
- * If element x deleted, then all direct neighbours also removed.
- Players do not observe time-t network structure, but understand network formation process

Interdependencies

- Undirected network over elements in $\Pi(t)$
- New elements uniformly randomly form links with existing elements:
- Each new element forms κ links per unit mass of existing elements
- * If element x deleted, then all direct neighbours also removed.
- Players do not observe time-t network structure, but understand network formation process

Incremental Policymaking

- At any instant t, one player I(t) in control
- Adds new elements A(t) and deletes $D(t)\in \Pi(t)$
- $\Rightarrow R(t) = \{D(t) \text{ and neighbours of } D(t)\} \subseteq \Pi(t) \text{ removed}$
 - Player faces flow constraint on addition and removal rates:

$$\frac{d}{dt}|\mathcal{A}(t)| + \frac{d}{dt}|\mathcal{R}(t)| \leq \gamma$$

where $\mathcal{A}(t)$, $\mathcal{R}(t)$ are accumulated sets of additions and removals:

$$\mathcal{A}(t) = \bigcup_{0}^{t} \mathcal{A}(\tau), \ \mathcal{R}(t) = \bigcup_{0}^{t} \mathcal{R}(\tau)$$

 Constraint represents limited political resources to persuade voters, overcome interest groups, etc

Policymaking Technology

Consider composition of removal set R(t):

- D(t)'s neighbours are representative sample of $\Pi(t)$
- i.e., n/s ratio in R(t) is weighted avg. of n/s ratio in D(t) and $\Pi(t)$
- At $\lim \kappa \to \infty$, n/s ratio in R(t) equals $\frac{m_n}{m_e}$

Mode

Reduced-Form: Policymaker's Problem

• Player *I*(*t*) chooses

addition rates
$$a_n^+(t) \ge 0$$
, $a_s^+(t) \ge 0$
removal rates $a_n^-(t) \ge 0$, $a_s^-(t) \ge 0$

• so masses of north and south elements, m_n and m_s , evolve as

$$\dot{m}_i(t) = a_i^+(t) - a_i^-(t)$$

subject to flow constraints

$$egin{aligned} & a_\ell^+(t) + a_r^-(t) + a_\ell^-(t) + a_r^-(t) \leq \gamma^{-1}, \ & a_i^-(t) = 0 \ ext{if} \ m_i(t) = 0 \end{aligned}$$

• and entanglement constraint (given $\kappa \to \infty$)

$$\frac{a_n^-(t)}{a_s^-(t)} = \frac{m_n}{m_s}$$

Unentangled Policymaking

Entangled Policymaking

Dynamics

- Player N starts with control at t = 0 (WLOG)
- Whenever I in control, control switches to -I at random time

Mode

- Control switch from *I* to -*I* has constant arrival rate λ_I.
 (i.e., power transitions independent of current policy position)
- Focus on myopic setting, $r_I \rightarrow \infty$: so
- Policymaker I(t) maximizes $\frac{d}{dt}u_I(t)$.

Dynamics

- Player N starts with control at t = 0 (WLOG)
- Whenever I in control, control switches to -I at random time
- Control switch from *I* to -*I* has constant arrival rate λ_I.
 (i.e., power transitions independent of current policy position)
- Focus on myopic setting, $r_I \rightarrow \infty$: so
- Policymaker I(t) maximizes $\frac{d}{dt}u_I(t)$.

Outline

2 Model

- 4 Dynamics of Conflict
- 5 Strategic Effects

Conclusion

Myopic player N. Focus on non-extreme policies, $y_S \le y \le y_N$

Observation

If (x, y) is S-simple, then N removes elements.

$$(a_n^+, a_s^+, a^-) = (0, 0, \gamma^{-1})$$

Observation

If (x, y) is almost S-simple, then N removes elements.

$$(a_n^+, a_s^+, a^-) = (0, 0, \gamma^{-1})$$

Observation

Otherwise, N adds elements towards his ideal:

$$(a_n^+, a_s^+, a^-) = (\gamma^{-1}, 0, 0)$$

Observation

N moves along own ideal once he gets there:

$$(a_n^+, a_s^+, a^-) = \left(\gamma^{-1} \frac{y}{x+y}, 0, \gamma^{-1} \frac{x}{x+y}\right)$$

Observation

At simple, ideal policy, N stagnates:

$$(a_{\ell}^+, a_r^+, a^-) = (0, 0, 0).$$

Observation

L removes elements in "basin": $\zeta_N < \frac{2x}{x+y}$. Otherwise, he adds (or moves along ideal).

Observation

For any starting policy $\Pi(0)$, simple ideal policy eventually attained. (i.e., no kludge without conflict.)

Observation

For any starting policy $\Pi(0)$, simple ideal policy eventually attained. (i.e., no kludge without conflict.)

Outline

1 Intro

2 Model

3 One-Player Game

- Operation of Conflict
- 5 Strategic Effects

Conclusion

Two-Player Game: Preliminary Observations

- Myopic players \rightarrow no strategic interactions;
- Players' strategies same as in one-player game
- Can restrict attention to $y \in [y_S, y_N]$;
- Policy never becomes "extreme"

Observation

Suppose $\Pi(t)$ is simple. Then $\Pi(\tau)$ will be simple for all $t > \tau$.

Observation

Suppose $\Pi(t)$ is simple. Then $\Pi(\tau)$ will be simple for all $t > \tau$.

Lemma

Suppose $\Pi(t)$ is "approx. simple" $\left(\frac{2x}{x+y} < \zeta_N\right)$, or $\frac{2x}{y-x} < \zeta_S$). Then policy eventually becomes simple.

Observation

"Approx. simple" policies are attracting basin for set of simple policies.

Long-run outcome: two possibilities

Definition

If $\lim_{t \to \infty} x(t) = \infty$, then we say policy is kludged

Long-run outcome: two possibilities

Definition If $\lim_{t\to\infty} x(t) = \infty$, then we say policy is kludged

Lemma

In the long-run (t $\rightarrow\infty)$, policy is almost surely either simple or kludged

Question

What is Pr[kludge]?

When does kludge occur?

Outside attracting basin,

- If $y(t) = y_N$ or y_S , then complexity decreases: $\dot{x}(t) \approx -\gamma$
- If $y_{\mathcal{S}} < y(t) < y_{\mathcal{N}}$, then complexity increases: $\dot{x}(t) = \gamma$

When does kludge occur?

Then (intuitively)

- Kludge only if policy spends more time between than at ideals
- i.e., kludge only if $\dot{x}(t) > 0$ "on average"

When does kludge occur?

Then (intuitively)

- Kludge only if policy spends more time between than at ideals
- i.e., kludge only if $\dot{x}(t) > 0$ "on average"

Lemma

Pr[kludge] > 0 iff

- initial policy is outside sink, and
- "average long-run drift" is asymptotically positive:

$$\mathbb{E}\Big[\lim_{\substack{\tau \to \infty \\ \log - \operatorname{run}}} \lim_{\substack{x(0) \to \infty \\ \text{asymptotic}}} \frac{1}{\tau} \int_0^\tau \dot{x}(t) dt\Big] > 0$$

Comparative Statics

Definition

$$\phi = \frac{1}{\lambda_{N} - \lambda_{S}} \ln \frac{\lambda_{S} \left(3\lambda_{N} - \lambda_{S} \right)}{\lambda_{N} \left(3\lambda_{S} - \lambda_{N} \right)}$$

Theorem

Pr[kludge] > 0 iff the following conditions hold:

- Players' ideals are far apart, and frictions are high: $y_N y_S > \gamma/\phi$
- Power is relatively equal: $\frac{1}{3} < \frac{\lambda_l}{\lambda_{-l}} < 3$
- Initial policy outside attraction basin

- **High** institutional frictions $(\gamma) \Rightarrow$ **more** kludge
- * e.g., supermajority elements, multiple veto points

• Low institutional frictions $(\gamma) \Rightarrow$ less kludge

- Power imbalance (large $|\lambda_I / \lambda_{-I}|) \Rightarrow$ kludge \downarrow
- * Less kludge with one dominant party or with autocracy;
- * More kludge with democracy

- Planner who chooses γ , λ_N , λ_S faces tradeoff:
- * Low-friction, autocratic systems produce less kludge (low y(au))
- * but also more extreme outcomes (high |x(au)|)
- Comparison: US versus Singapore?

• Less extreme competing ideologies (small $y_N - y_S$) \Rightarrow less kludge

• More extreme competing ideologies (large $y_N - y_S$) \Rightarrow more kludge

• **Stronger** preferences over ideology (large ζ_N, ζ_S) \Rightarrow more kludge:

• Weaker preferences over ideology (small ζ_N, ζ_S) \Rightarrow less kludge:

• Weaker preferences over ideology (small ζ_N, ζ_S) \Rightarrow less kludge:

Complexity begets complexity

Proposition

Suppose the conditions from the theorem are satisfied, so Pr[kludge] > 0.

- As $x(0) \rightarrow \infty$, $\Pr[kludge] \rightarrow 1$ uniformly for all y(0).
- As $x(0) \rightarrow 0$, $\Pr[kludge] \rightarrow 0$ uniformly for all y(0).

Outline

1 Intro

2 Model

3 One-Player Game

Oynamics of Conflict

5 Strategic Effects

Conclusion

Modeling Strategic Effects

- Consider nonmyopic players, $ho < \infty$
- Markov-perfect equilibria (no punishment schemes)
- Player N is zealous: ζ_N large
- N's strategic behavior vs: (i) zealous S, (ii) moderate S

Zealot vs. Zealot

- Simplifying assumption: $\zeta_N, \zeta_S \to \infty$
- Baseline: absent strategic interaction ($ho=\infty$),

Strategic Extremism

Zealots "overshoot" ideal.

Shifting the Goalposts

strategy	short run	medium run	longer run
overshoot	away from ideal	closer to ideal	higher complexity
stagnate	at ideal	further from ideal	lower complexity

Strategic extremism \rightarrow more kludge

With zealous players, 'endogenous extremism'

Zealot vs. Moderate

- Simplifying assumption: $\zeta_N \to \infty$ and $\zeta_S \to 1$
- * Also, $1/\lambda_N\gg 0$
- Baseline: absent strategic interaction ($ho=\infty$),

Intentional Complexity

Zealots add "useless" complexity vs. moderates

Building a Moat

strategy	short run	medium run	longer run
overshoot	higher complexity	closer to ideal	-
stagnate	lower complexity	further from ideal	-

Obstructionism

How to protect policy? Depends on opponent:

- Strategic extremism vs. zealots
- Intentional complexity vs. moderates
- Intentional complexity is transient, strategic extremism is persistent

Long-run effects differ:

- Strategic extremism is *persistent*
- Intentional complexity is transient

Conclusion

- Model of policymaking w/ two key features: complexity and interdependence.
- Highlights role of political conflict in persistent policy inefficiencies
- Implications for optimal institutional design
- OE applications: bureaucracies, routines