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Entangled systems

• Complicated systems: accumulate design elements over time

• Elements are interdependent (entangled with each other).
• Entanglements inhibit change:

Fixes create problems elsewhere, necessitate further fixes, etc.

• Change may be delayed→ inefficiencies persist and accumulate
∗ Rich terminology for inefficiencies: cruft, kludges, technical debt, etc

• Examples:
• MS-DOS→Windows→Windows 95 ...
• 1960s contracting processes at US Defense Dept
• Public policy: tax, healthcare



This paper:

When complicated, entangled systems face continuous pressure to change,
• Should they adapt continuously?
• Or abruptly and episodically?

Abrupt change occurs in various settings:
• radical re-engineering in organizations
• big-bang reforms of public policy
• periodic refactoring in software development

Abrupt change is often associated with technical debt ↓, functionality ↓.
• Occurs with disruptive new products: e.g., iPhone.
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Product design example

2011: Apple releases Final Cut Pro X (to replace Final Cut Pro 7).

Many users have expressed their frustration with a litany of missing fea-
tures in Final Cut Pro X. To begin with, there’s no support for output to
tape ... There’s no support for EDL or XML export ... There’s no ...

... because FCPX uses a completely re-architected underlying media
handling and editing paradigm, it can’t ...

— arstechnica.com



Stylised model of entangled systems

System Design:
• system with continuum of elements
• designer can add and delete elements
• ‘good’ elements randomly turn ‘bad’ over time

Entanglement:
• exogenous directed network structure over elements
• element deleted→ direct and indirect children also deleted



Main result: a preview

The (myopic) designer’s optimal strategy involves episodic ‘abrupt’
reorganizations (iff network is sufficiently dense).

t

mass
good elements

bad elements



Preview of results

Why abrupt reorganization?

1 Driven by disentanglement effect: large one-time reorganization less
disruptive than continuous, incremental reorganization.

2 Also driven by intertemporal tradeoff: patient designer will optimally
cycle between ‘clean’ and ‘dirty’ designs.



Lit review

• Kludges
• Ely 2011; Ellison and Holden 2013; Kawai, Lang and Li 2018

• Sandpile / traffic-jam models
• Bak, Chen, Scheinkman and Woodford 1993

• Rugged landscapes
• Kauffman 1989; Milgrom and Roberts 1992; Levinthal 1997



Road map

1 Intro

2 Model

3 The Coefficient of Friction

4 Myopic designer

5 Patient designer

6 Conclusion



1 Intro

2 Model

3 The Coefficient of Friction

4 Myopic designer

5 Patient designer

6 Conclusion



The Model

• Time is continuous, t ≥ 0.
• System St is a continuum of infinitesimal, equal-weighted elements.
• Good elements independently turn bad with constant decay rate 𝜆.
• Designer’s flow payoff depends on masses of good vs. bad elements:

𝜋t = mG(t) − cmB(t).



The designer

At each instant t, the designer may:
• Add good elements at bounded rate at ≤ 𝛼 (mass per unit time).
• Choose target set D(t) ⊆ St of elements for deletion.

Elements are entangled:
• Exogenous network of directed links between elements.
• Element x targeted→ all children, grandchildren, ... also deleted.
∗ Notation: set D targeted→ collateral set C(D, St) ⊃ D deleted.

Continuous implementation of network formation/deletion process
• Similar to mean-field approximation of Barabási and Albert 1999.
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Network: preview of key features

• Homogenous, ‘detail-free’ network;
so, ‘big-picture’ view of system is sufficient.

• Entanglement is ‘limited’:
each (infinitesimal) element has finite number of (infinitesimal)
children + grandchildren + ...

• Entanglement is ‘non-localised’:
as system grows, each element accumulates more links.



Network formation

Links:
• Each new element links to each existing element with probability 𝜅 ⋅ dm,

where dm is infinitesimal element mass;
(𝜅 > 0 parametrizes entanglement.)
∗ So, each new element links to 𝜅 ⋅m other elements (in expectation).

Directions:
• Elements are ranked [0, 1]. Links point towards lower-ranked elements.
∗ So, network is acyclic – which ensures ‘limited entanglement’.
• Each new element is uniformly randomly assigned a rank.
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What does the designer know?

The Designer:
• Observes the type (good or bad) of each element in St.
• Understands the network formation process,

but doesn’t observe time-t network.
∗ Upon deleting x, immediately observes deletion of x’s descendants.



Continuous ingredients

• continuous time
• continuous space (continuum of elements)
• continuous pressure to reorganize (decay process)
• ‘small’ network frictions

⇛ continuous / discontinuous reorganizations?



Simplifying the problem

Designer’s time-t problem:

Given system S(t) and (beliefs about) network E(t),
Choose growth rate gt and deletion set D(t)

to maximize

∫
∞

0
e−rt (mG(t) − cmB(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

flow payoff

dt.



Simplifying the problem

Myopic Designer’s time-t problem:

Given system S(t) and (beliefs about) network E(t),
Choose growth rate gt and deletion set D(t)

to maximize

d
dt
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The details don’t matter

Following any history, the designer believes that:
• Links are uniformly randomly distributed across element-pairs.
• Each element’s rank is uniformly randomly distributed.

⇒ So, all good elements look alike; all bad elements look alike.

In the optimal strategy,
• Only bad elements are targeted.
• Good elements are added at maximal rate: a(t) ≡ 𝛼.

⇒ So, designer simply chooses how many bad elements to target.
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The coefficient of Friction

Given:
• system S and network E
• target set D ⊂ S of bad elements
• collateral set C(D, S) with mass 𝛥B of bad elements

The (coefficient of) Friction

F( m⏟
mass
, mG/mB⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ratio

, 𝛥B⏟⏟⏟
scale

) = 𝛥G𝛥B

is the ratio of good to bad elements in C(D, S).



Laws of motion

At time t, the Designer chooses

flow rates of deletion 𝛽G(t), 𝛽B(t)
discrete masses of deletion 𝛥G(t), 𝛥B(t)

to control the system (mG(t),mB(t)) via

dmG(t) = 𝛼dt⏟⏟⏟⏟⏟
growth
−𝜆mG(t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

decay

− (𝛽G(t)dt + 𝛥G(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
removal

,

dmB(t) = 𝜆mG(t)dt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decay

− (𝛽B(t)dt + 𝛥B(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
removal

subject to Frictional constraints

𝛥G(t)
𝛥B(t)
= F (m(t),mG(t)/mB(t),𝛥B(t)) ,

𝛽G(t)
𝛽B(t)
= F (m(t),mG(t)/mB(t),0) .
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Friction: key property

Friction F is:
1 increasing in mass m
2 increasing in good/bad ratio mG/mB

3 increasing in entanglement 𝜅
4 decreasing in scale of reorganization 𝛥B
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Friction: some intuition
C comprises (i) target set D and (ii) descendants D′ of targets:

C⏟
collateral set

= D⏟
bad elements only

⋃ D′⏟
random draws from S

Friction F is good/bad ratio of C = D ∪D′:
1 As mass m increases, D′ increases in size⇒ F increases.
2 As ratio mG

mB
increases, more good elements in D′⇒ F increases.

3 As entanglement 𝜅 increases, D′ increases in size⇒ F increases.
4 As scale 𝛥B increases ... ?
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How does friction F change with scale 𝛥B?

As more elements deleted (𝛥B ↑), two conflicting effects:

decontamination vs. disentanglement



(1/2): Decontamination Effect

As more elements deleted (𝛥B ↑),
decontamination effect increases friction:

𝛥B ↑ ⇒
mG − 𝛥G
mB − 𝛥B

↑
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

remaining elements S ⧵ C
become ‘cleaner’

⇒ F = 𝛥G𝛥B
tends to ↑

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
D and thus C = D ∪D
also becomes ‘cleaner’

C ∶ collateral set
D ∶ target set

D ∶ descendants



(2/2): Disentanglement Effect

As more elements deleted (𝛥B ↑),
disentanglement effect reduces friction:

𝛥B ↑ ⇒ |S ⧵ C| ↓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
remaining system S ⧵ C

shrinks

⇒ |D′|
|D| ↓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

less ‘collateral damage’

⇒ F = 𝛥G𝛥B
tends to ↓

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
C becomes ‘dirtier’

C ∶ collateral set
D ∶ target set

D ∶ descendants



How does friction F change with scale 𝛥B?

Disentanglement effect⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
F tends to ↓ as 𝛥B ↑

dominates Decontamination effect⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
F tends to ↑ as 𝛥B ↑

⇓
Friction F decreases as scale 𝛥B increases
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Myopic designer performs full cleansing

Consider a myopic designer: i.e.,
maximizes d

dt (mG(t) − cmB(t)).

Friction F decreases as scale 𝛥B increases
⇓

With myopic designer, at any instant,
whenever any bad elements are removed, all bad elements are removed.
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Optimal modes for a myopic designer

The myopic designer’s optimal strategy is unique, and takes one of two forms:
1 a ‘cleansing-cycles’ mode.
2 a ‘constant-cleansing’ mode.

Cleansing cycles are optimal iff entanglement 𝜅 is sufficiently high



Cleansing cycles: abrupt reorganizations

t

mass

t

b,D

good elements

bad elements

Reorganization occurs episodically:
abrupt cleansing→ continuous cleansing→ no cleansing→ abrupt ...



Cleansing cycles: abrupt reorganizations

t

mass

c

t

F

good elements

bad elements

Reorganization occurs whenever friction is low: F < c.



Cleansing cycles: a walkthrough

t

mass

c

t

F

Initially, friction F increases as system grows.
When F > c, designer stops cleansing;

⇒ contamination begins (mG/mB decreases).



Cleansing cycles: a walkthrough

t

mass

c

t

F

Eventually, ‘contamination effect’ starts to dominate;
⇒ friction F starts decreasing.



Cleansing cycles: a walkthrough

t

mass

c

t

F

When friction F = c, cleansing event is triggered.
Abrupt ‘full cleansing’ due to disentanglement effect.



Steady-state mode

t

m

c

t

F

In steady-state mode: cleansing occurs constantly.

good elements

bad elements



Entangled systems and abrupt reorganizations

t

m

t

F

c

Increase in entanglement 𝜅 → steady-state mode is inefficient
→ cleansing cycles are optimal



Comparative statics

Cleansing Cycles are optimal iff:

1 entanglement (𝜅) is high.
2 burden imposed by bad elements (c) is low.
3 productivity/innovativeness of designer (𝛼) is high.
4 rate of decay (𝜆) is low.
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Patient designer

Suppose designer is non-myopic: maximizes

∫
∞

0
e−rt (mG(t) − cmB(t))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

flow payoff

dt with r < ∞.

Simplifying assumption: elements are densely entangled, i.e., 𝜅 → ∞.



Dense entanglement→ constant returns to scale

Consider a small target set D.

Recall: C comprises (i) target set D and (ii) descendants D′ of targets,

C⏟
collateral set

= D⏟
bad elements only

⋃ D′⏟
random draws from S

Given 𝜅 → ∞,
• D′ (vastly) outnumbers D, so ...
• C is approx. random sample of S = (mG,mB).

At the 𝜅 → ∞ limit, F(m,mG/mB,𝛥B) ≡ mG/mB.

⇒ Friction is constant in scale 𝛥B; i.e., ‘disentanglement’ effect is absent.
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Dense entanglement→ cleansing cycles

t

mass

good elements

bad elements

Proposition
With non-myopic designer and dense network:
Cleansing cycles are strictly optimal.



Why cleansing cycles (even without disentanglement)?

Intuition –

Designer has two conflicting objectives:
• Maintain ‘productive’ system (high mG, low mB) over time (on average).
• Reorganize cheaply, i.e., when friction F = mG

mB
is low.

How to reconcile these objectives?
• Allow system to cycle between ‘clean’ (high F) and ‘dirty’ (low F).
• Concentrate reorganizations on times with low F.



How does reorganization affect productivity?

t

mass

t

˛

good elements

bad elements

Reorganization: discontinuous drop in payoffs
(foreshadowed by gradual decline).



How does productivity evolve over the cycle?

t

þ

For a non-myopic designer,

• Drop in payoffs from reorganization is worthwhile:
∗ Following reorganization, payoff decline is reversed.

• Designer delays past peak payoff to reorganize:
∗ Maximizes time spent at peak / near-peak payoffs.
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Recap

1 Abrupt reorganizations iff system is highly entangled.

2 Abrupt reorganization→ functionality ↓, technical debt ↓.
• Introduction of disruptive new products: e.g., iPhone.

3 Abrupt reorganization→ discrete drop in performance.
• But performance improves rapidly afterward.

4 Reorganizations are not triggered by discrete technological shock.
• e.g., incremental improvements in battery, touchscreen, CPU,

storage tech→ iPhone.



What’s next

Immediate:
• Extend results to general case: 𝜅 < ∞ and r < ∞.

On the agenda:
• How to model different (richer) interdependency structures?
• How to endogenize entanglement? (e.g., modularization.)
• How to introduce competition / strategic interactions?
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