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Abstract

This paper describes a mechanism that sustains high markups, even in markets with homogenous goods 
and many competing firms. We show that random utility models with idiosyncratic taste shocks driven by 
standard noise distributions produce, in large markets, robustly high equilibrium markups that are insensi-
tive to the degree of competition. For example, with Gaussian noise and n firms, markups are asymptotically 
proportional to 1/

√
lnn; consequently, a hundred-fold increase in n, from 10 to 1000 competing firms, only 
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halves the equilibrium markup. The elasticity of the markup with respect to n asymptotically equals the 
distribution’s tail exponent from extreme value theory. Only noise distributions with very thin tails have 
negative asymptotic markup elasticities.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

This paper studies the impact of competition on prices in large markets. It focuses on random 
utility models in a setting of monopolistic competition, where consumer choice is influenced by 
firm-specific ‘noise’ shocks (e.g., Luce, 1959; McFadden, 1981; Anderson et al., 1992). We de-
rive a tractable general expression for equilibrium markups in symmetric random utility models 
with many competing firms.1 This expression allows us to characterize the impact of different 
noise distributions on competitive outcomes. We find that high mark-ups are a robust feature of 
such models. Specifically, random utility models with standard (thin-tailed) noise distributions 
produce high markups, even with homogenous goods and many competing firms; increased com-
petition in large markets only weakly drives down equilibrium mark-ups.

Explicit expressions for equilibrium markups in random-utility settings have previously been 
derived only for some specific distributions of noise. In these special cases, equilibrium markups 
turn out to be either completely unresponsive or extremely responsive to competition. Consider 
the Perloff and Salop (1985) random utility model. If consumer noise has an exponential density 
or a logit (i.e., Gumbel) density, then markups converge to a strictly positive value as the number 
of competing firms n goes to infinity: asymptotic markups have zero elasticity with respect to n
(Perloff and Salop, 1985; Anderson et al., 1992). In contrast, when noise is uniformly distributed, 
markups are proportional to 1/n: markups have unit elasticity and thus decrease strongly with n
(Perloff and Salop, 1985).

These special cases — exponential, logit, and uniform — are appealing for their analytic 
tractability rather than their realism. Relative to the Gaussian distribution, the exponential and 
logit cases have relatively fat tails while the uniform case has no tails. We seek to understand 
how prices respond to competition in the general case; in particular, for empirically realistic 
noise distributions.

Applying tools from Extreme Value Theory (EVT), we show that markups are asymptotically 
proportional to 1/ 

(
nf
[
F−1 (1 − 1/n)

])
, where F is the cumulative distribution function (CDF) 

of the noise and f = F ′ is the corresponding density function. This expression is easy to com-
pute. Further, it highlights a simple ‘limit pricing’ logic for the determination of equilibrium 
markups. Heuristically, each firm sets prices by conditioning on receiving the best random shock 
amongst all competing firms, then choosing a markup corresponding to the expected difference 

1 The restriction to the symmetric-firm case maintains tractability. This precludes us from addressing instances of 
asymmetries; see the discussions in Bajari and Benkard (2003) and Armstrong (2016). Consequently, our propositions 
can be viewed as only suggestive of what happens in the richer structural models that are most frequently used in 
empirical industrial organization.
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between its random shock and that of the next-best firm. In more formal terms, our markup ex-
pression is asymptotically proportional (and often equal) to the expected gap between the highest 
draw and second highest draw in a sample of n random draws of noise. Thus for large n, markups 
are pinned down by the tail properties of the noise distribution.

The Gaussian case – which has relatively thin tails – is illustrative. In our setting of consumer 
choice, the Gaussian distribution is a natural benchmark: if a consumer receives many small, 
idiosyncratic influences on his preferences or beliefs, then (under appropriate assumptions) the 
sum of these influences produces a Gaussian-distributed ‘taste’ shock.2 No closed-form solutions 
for equilibrium markups associated with Gaussian noise have previously been derived. We show 
that markups in the Gaussian case are asymptotically proportional to 1/

√
lnn. This implies that 

an increase in the number of competing firms from 10 to 1000 firms results in only a halving of 
the equilibrium markup. In contrast, with Cournot competition, where markups are proportional 
to 1/n, such an increase would result in the markup becoming 100 times smaller. This example 
shows that in large markets, competition with plausible noise distributions may only exert weak 
pressure on prices (even in the extreme case of homogeneous goods).

Further, we argue that insensitive prices are the norm rather than the exception. Specifically, 
we find that the elasticity of the markup with respect to the number of firms asymptotically 
equals the EVT tail index of the noise distribution, an easy-to-calculate magnitude that captures 
the notion of tail “fatness”. Using this result, we show that markups have zero asymptotic markup 
elasticity for a wide range of noise distributions, characterized by intermediate tail fatness. Only 
distributions with very thin or fat tails have asymptotic markup elasticities different from zero.

Distributions with right-bounded support (i.e., finite right tails), such as the bounded power-
law, correspond to settings where consumers’ per-unit valuations of goods are bounded; such 
settings are increasingly popular in models of trade (e.g., Arkolakis et al., 2015).3 In our setting, 
with bounded consumer valuations, one might expect intense competition between homogenous 
firms to generate large and negative markup elasticities (see also Vives, 1985). We show that this 
intuition does not always hold: although asymptotic markup elasticities are indeed negative for 
common right-bounded distributions such as the uniform and the bounded power-law, there exist 
right-bounded distributions where the asymptotic markup elasticity equals zero.

For distributions with fatter-than-exponential tails (e.g., the lognormal and Pareto distri-
butions), mark-ups paradoxically increase as the number of competing firms increase. While 
the possibility of price-increasing competition is not new to the literature (see, e.g., Weyl and 
Fabinger, 2013), our limit-pricing logic highlights a simple intuition for this phenomenon: with 
sufficiently fat tails, the expected gap between the highest and second-highest of n random draws 
is asymptotically increasing in n (i.e., the number of competing firms).

Importantly, our findings exhibit “detail-independence”. They hold for all of the random utility 
models that we consider: Perloff and Salop (1985), Sattinger (1984), Hart (1985b). The Perloff–
Salop, Sattinger, and Hart models differ in a host of important ways.4 Yet, these three models 

2 As implied by various versions of the central limit theorem; see, for example, Feller (1971, p. 262).
3 In these models, bounded consumer valuations are typically imposed either as a consequence of convenient assump-

tions (e.g., linear demand functions; see Melitz and Ottaviano, 2008) or to produce certain desiderata. For example, 
in Arkolakis et al. (2015), the assumption of bounded consumer valuations (leading, in their setting, to a finite choke 
price) ensures that marginal changes in trade costs have continuous effects on prices and welfare, thus enabling tractable 
analysis.

4 For instance, in the Perloff–Salop model, consumers need to buy one unit of the good. In the Sattinger model, they 
allocate a fixed dollar amount to the good. The Hart model does not impose either constraint.
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produce (asymptotically) the same equilibrium markup up to a scaling constant, for a wide range 
of different noise distributions. Such detail-independence permits a more robust analysis than 
would be possible if results depended on the specific properties of the demand specification.

In addition to an understanding of the economics of random utility models, the tools that we 
develop allow us to calculate the large-n asymptotic behavior of integrals for a class of functions 
h (x), of the form∫

h(x)f k(x)Fn(x)dx, k ≥ 1. (1)

This integral can be used to calculate the expected value of a function of the maximum of n
random variables, or the gap between the maximum and the second largest value of those random 
variables. Using EVT, we derive robust approximations of this integral for large n.

These mathematical results have broad applications to various economic settings related to 
market and auction mechanisms in large economies.5 In particular, Mangin (2015a) analyzes 
an elegant model of frictional labor markets where firms compete via auction to hire workers, 
and points out that the present paper’s results may be applied to calculate the asymptotic value 
of key economic quantities such as the income share of labor. Using a closely related frame-
work, Mangin (2015b) points out that Theorem 3 of the present paper may be applied to derive 
aggregate production functions from an underlying productivity distribution.6

Theoretical results quantifying the effect of competition on markups in large markets have so 
far been limited. Some papers derive explicit markup expressions under specific functional form 
assumptions (e.g., Dixit and Stiglitz, 1977; Perloff and Salop, 1985). One exception is Vives
(1985), who derives asymptotic bounds on the markup function under Bertrand and Cournot 
competition given bounded consumer valuations and “sufficiently substitutable” competing prod-
ucts; this corresponds to the case of right-bounded distributions in our model. We briefly discuss 
the comparison with Vives (1985) in Section 2.3.

A related theoretical literature studies qualitative features of the effect of competition on 
markups; the key insights are laid out in Vives (2001, Section 6.4). If competing products be-
come infinitely substitutable as the number of competing firms grows large (as in Vives, 1985), 
then markups asymptotically approach zero. Indeed, given bounded noise distributions in our 
random-demand setting, each product will (in expectation) have “nearby” competitors with sim-
ilar taste shock realizations as n grows large, so markups vanish asymptotically (see also Perloff 
and Salop, 1985). Similarly, Mas-Colell (1975) argues that if consumers have continuous prefer-
ences over a compact product space, then the competitive outcome obtains at the large-n limit. 
The converse point – that markups do not vanish asymptotically if products remain imperfectly 
substitutable even at the large-n asymptotic limit – has also been made; see, e.g., Hart (1985a). 
This latter point is analogous to our finding that for sufficiently fat-tailed distributions, markups 

5 More generally, EVT techniques are important in many areas of economics, such as industrial organization and 
discrete choice (e.g., Luce, 1959; McFadden, 1981; Anderson et al., 1992; Dagsvik, 1994; Bulow and Klemperer, 2002,
2012; Dagsvik and Karlstrom, 2005; Ibragimov and Walden, 2010; Weyl and Fabinger, 2013, and Armstrong, 2016), 
international trade (e.g., Eaton and Kortum, 2002; Bernard et al., 2003, and Chaney, 2008, 2015), macroeconomics and 
growth (e.g., Gabaix, 1999, 2011; Jones, 2005; Luttmer, 2007, and Acemoglu et al., 2012), systemic risk analysis (e.g., 
Jansen and de Vries, 1991 and Ibragimov et al., 2009, 2011) and auction theory (e.g., Hong and Shum, 2004).

6 In a separate application, Gabaix and Landier (2008) use some of our results to analyze the upper tail of the distribu-
tion of CEO talents.
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do not vanish because the expected gap between the largest and second-largest noise shocks 
remains bounded away from zero.

Perhaps closest to our paper – and in particular to our finding that markups decrease (in-
crease) with competition for thin-tailed (fat-tailed) distributions – are Weyl and Fabinger (2013)
and Quint (2014), who show how comparative statics of pricing behavior hinge crucially on log-
concavity of the demand function; relating this insight to our results, Weyl and Fabinger (2013)
point out that competition increases (decreases) markups if the distribution of consumer val-
uations is log-convex (log-concave).7 These papers precisely demarcate the boundary between 
price-increasing and price-decreasing competition. Complementing these papers, we quantify the 
impact of competition on prices for general distributions. In fact, we show that for a wide range 
of distributions above and below the aforementioned boundary, prices are relatively insensitive 
to competition.

Our results also relate to some stylized facts about competition and markups. A number of pa-
pers document high markups in industries with homogenous goods and many competing firms. 
Hortaçsu and Syverson (2004) document high mark-ups in the mutual fund market, representing 
more than 1% of assets under management for most asset classes, even in asset classes with hun-
dreds of competing funds. Ausubel (1991) and Stango (2000) show that interest rates on credit 
cards have been much greater than the cost of funds, despite the presence of hundreds of compet-
ing card-issuing banks.8 Our model provides some relevant conceptual insights for interpreting 
these facts. A more rigorous theoretical investigation of these industries would require a model 
with ex-ante heterogenous firms to allow for dispersed markups, something that our symmetric-
firm model does not address.

An empirical literature studies the rate at which markups change with entry. Bresnahan and 
Reiss (1991) show, in a study of US firms, that oligopolistic markups decrease rapidly with n
when n is small (between 1 and 3), but level off (above zero) beyond three competitors.9 While 
Bresnahan and Reiss’ (1991) sample is limited to small markets (typically with no more than 
ten competitors) and thus does not overlap with the large-n focus of our paper, their results are 
broadly consistent with our conceptual point that for sufficiently large markets, under a wide 
range of circumstances, markups are relatively insensitive to increased competition. On the other 
hand, Campbell and Hopenhayn (2005) show that establishment size is positively correlated 
with market size in large retail markets, and suggest that this correlation arises because markups 
decrease with market size (so that firms in large markets have to exploit economies of scale to 
overcome fixed costs).

The paper proceeds as follows. Section 2 presents the main economic result using the ran-
dom utility model of Perloff and Salop (1985), demonstrates the equivalence of our results to 
the limit-pricing and auction settings, and discusses welfare implications. Section 3 considers 

7 Relatedly, a number of other papers focus on the point that prices may rise with more intense competition: see, e.g., 
Chen and Riordan (2008), as well as Rosenthal (1980), Bénabou and Gertner (1993), Bulow and Klemperer (2002), 
Carlin (2009), and Zhelobodko et al. (2012) for perverse competitive effects generated by different microfoundations.

8 Further examples of high markups in financial products abound. Bergstresser et al. (2009) find that mutual funds sold 
by brokers have anomalously high fees and low net-of-fee returns. Henderson and Pearson (2011) find that structured 
equity products also have robustly high mark-ups, and hypothesize that this is related to investor confusion about product 
quality. Another complementary explanation is that investors like the psychological comfort given by specific mutual 
fund brokers (Gennaioli et al., 2015).

9 Another result in this vein is from Mazzeo (2002), who finds in small, local motel markets that the marginal effect of 
additional competition on markups decreases quickly with the number of competitors.
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alternative random utility models (Sattinger, 1984; and Hart, 1985b), and shows that the details 
of the demand-side modeling matter little, or not at all, to markups. Section 4 presents the main 
mathematical result: an asymptotic approximation of a key integral that is needed to characterize 
economic environments in which extremes matter. We show that the tail of the noise distribu-
tion – captured by the tail index – is the crucial determinant of prices. As many common noise 
distributions have a tail index of zero, our results imply that in a wide range of market contexts 
additional competition has little effect on prices, once the market goes beyond a small number of 
firms. Section 5 concludes.

We prove our main results (including Theorems 1 and 3) in Appendix A, and our other results 
in an online appendix.

2. How much does competition affect prices?

In this section, we describe the random utility model from Perloff and Salop (1985). Postpon-
ing some of the mathematical elements of the proof (which are provided in Section 4), we report 
our key result: an asymptotic expression for price markups under oligopolistic competition. We 
then discuss implications and applications.

2.1. The Perloff–Salop model

There is a single representative consumer and an exogenously specified number of firms, n. 
The consumer seeks to purchase exactly one unit of the good from one firm. He perceives that he 
will receive net utility Ui = Xi − pi by purchasing the good of firm i, where Xi is a noise term 
representing a random taste shock, i.i.d. across firms and consumers, and pi is the price charged 
by firm i. Thus the consumer chooses to purchase the good that maximizes Xi − pi . Each firm 
can produce at marginal cost c. The timing is as follows:

1. Firms simultaneously set prices;
2. Random taste shocks are realized;
3. Consumers make purchase decisions;
4. Each firm produces the amount purchased from that firm;
5. Profits are realized.

The key economic object of interest is the price markup in a symmetric equilibrium, which 
we derive by solving the first-order condition for each firm’s profit maximization problem. Firm 
i’s profit function is given by

πi = (pi − c)D (p1, . . . , pn; i) (2)

where D (p1, . . . , pn; i) is the demand function for firm i given the price vector (p1, . . . , pn) of 
the n goods. The first order condition for profit maximization implies the following equilibrium 
markup in a symmetric equilibrium

p − c = − D (p,p;n)

D1 (p,p;n)
. (3)

Here p is the symmetric equilibrium price, D
(
p,p′;n) denotes the demand function for a firm 

that sets price p when there are n goods and all other firms set price p′, and D1
(
p,p′;n) ≡

∂D
(
p,p′;n)/∂p. Denote the markup p − c in a symmetric equilibrium with n firms as μn.
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In a symmetric-price equilibrium, the demand function of firm i is the probability that the 
consumer’s surplus at firm i, Xi − pi , exceeds the consumer’s surplus at all other firms,

D (p1, . . . , pn; i) = P(Xi − pi ≥ max
j �=i

{
Xj − pj

}
) = P(Xi ≥ max

j �=i

{
Xj

}
). (4)

Let Mn denote max {X1, . . . ,Xn}, which has density nf (x)Fn−1(x).10 Evaluation of (3) gives 
the following markup expression for the symmetric equilibrium of the Perloff–Salop model:

μn = 1

nE
[
f (Mn−1)

] = 1

n (n − 1)
∫

f 2(x)Fn−2(x) dx
. (5)

Here F is the distribution function and f is the corresponding density of Xi .
Before proceeding to our analysis of the markup expression (5), let us briefly discuss our mod-

eling approach. We use a stripped-down model of random utility for our analysis. In the model, 
the consumer’s payoff function takes an additive form. We show in Section 3 that our results do 
not rely on this specification. There, we analyze two other random utility models which feature 
(as in Perloff and Salop, 1985) a representative consumer who has random i.i.d. taste shocks over 
producers, but differ in the form of consumer preferences. Our results from the present section 
are preserved in these alternative models, suggesting that the impact of competition on markups 
is independent of many of the institutional details of competition in random-utility settings.

A second feature of our model is that firms are completely symmetric ex ante, and thus each 
firm receives an equal 1/n expected market share in equilibrium. This assumption is strong, but 
enables tractable analysis.

2.2. Extreme value theory: some basics

We very briefly introduce some necessary machinery, and postpone some of the mathemat-
ical details to Section 4. As in Section 2.1, define Mn ≡ maxi=1,...,n Xi to be the maximum of 
n independent random variables Xi with distribution F , and define the counter-cumulative dis-
tribution function F (x) ≡ 1 − F (x). We are particularly interested in the connection between 
Mn and F

−1
(1/n)11; informally (in analogy with the empirical distribution function), one may 

think of F
−1

(1/n) as the “typical” value of Mn. In fact, the key to our analysis is to formalize 
this relationship between F

−1
(1/n) and Mn for large n.

Our analysis is restricted to what we call well-behaved distributions:

Definition 1. Let F be a distribution function with support on (wl,wu), where wu ≤ ∞. We 
say F is well-behaved iff f = F ′ is differentiable in some neighborhood of wu, limx→wu F (x)/

f (x) = a exists with a ∈ [0,∞], and

γ = lim
x→wu

d

dx

(
F (x)

f (x)

)
(6)

exists and is finite. We call γ the tail index of F .

10 Indeed, P (Mn ≤ x) = P (Xi ≤ x for i = 1 . . . n) = {P (Xi ≤ x)}n = F (x)n .
11 Strictly speaking, we abuse notation in cases where F is not strictly increasing by using F−1

(t) to denote 
F

←
(t) = F← (1 − t), where F← (t) = inf {x ∈ (wl,wu) : F (x) ≥ t} is the generalized inverse of F (Embrechts et al. 

1997, p. 130). This is for expositional convenience: our results hold with the generalized inverse as well.
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Table 1
Asymptotic expressions for markups.

Name of distribution f γ μn limn→∞ μn

Uniform 1, x ∈ [−1,0] −1 1/n 0

Bounded Power Law α (−x)α−1

α ≥ 1, x ∈ [−1,0]
−1/α

�(1−1/α+n)
α�(2−1/α)�(1+n)

∼ n−1/α

α�(2−1/α)
0

Weibull α (−x)α−1 e−(−x)α

α ≥ 1, x < 0

−1/α 1
α�(2−1/α)

n1−1/α

n−1 ∼ n−1/α

α�(2−1/α)
0

Bounded Exponential-like e−x/(1−x)

(1−x)2

x ∈ [0,1]
0 ∼ 1

(ln n)2 0

Gaussian (2π)−1/2 e−x2/2 0 ∼ (2 lnn)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−xφ
0 ∼ 1

φλ1/φ (lnn)1/φ−1 0

Gumbel exp(−e−x − x) 0 n
n−1 1

Exponential e−x, x > 0 0 1 1

Rootzen Gamma τxτ−1e−xτ

x > 0, τ < 1

0 ∼ 1
τ (lnn)1/τ−1 ∞

Lognormal exp(−2−1 log2 x)

x
√

2π

x > 0

0 ∼ 1√
2 ln n

e
√

2 ln n ∞

Pareto αx−α−1

α > 1, x ≥ 1

1/α
�(1+1/α+n)

α�(2+1/α)�(1+n)
∼ n1/α

α�(2+1/α)
∞

Fréchet αx−α−1e−x−α

α > 1, x ≥ 0

1/α 1
α�(2+1/α)

n1+1/α

n−1 ∼ n1/α

α�(2+1/α)
∞

This table lists asymptotic markups (under symmetric equilibrium) for the Perloff–Salop model for various noise dis-
tributions as a function of the number of firms n. f specifies the density function, and γ specifies the distribution’s 
tail index. Distributions are listed in order of increasing tail fatness. Asymptotic approximations are calculated using 
Theorem 1 except where the markup can be exactly evaluated.

The tail index γ measures the fatness of F ’s right tail. The case γ < 0 consists of very thin-
tailed distributions such as the uniform distribution. The case γ = 0 consists of distributions with 
tails of intermediate thickness. A wide range of economically interesting distributions fall within 
this domain, ranging from the relatively thin-tailed Gaussian distribution to the relatively fat-
tailed lognormal distribution, as well as other distributions in between, such as the exponential 
distribution. The case γ > 0 consists of fat-tailed, Pareto-like distributions such as the Pareto and 
the Fréchet distributions.

Being well-behaved in the sense of Definition 1 is not a particularly strong restriction. It is 
satisfied by most distributions of interest, and is easy to verify.12 In Section 2.3, Table 1 lists a 
number of popular densities and the corresponding tail index γ . Note that distributions with an 
exponential-like right tail all have γ = 0.

To ensure that the quantities that we are calculating do not diverge, we also impose some 
restrictions on the rest of F .

Definition 2. Let j : R → R have support on (wl,wu). The function j (x) is (wl,wu)-integrable 
iff 
∫ w

wl
|j (x)|dx < ∞ for all w ∈ (wl,wu).

12 Condition (6) is well-known in the EVT literature as a von Mises condition.
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For example, in Theorem 1 we require that f 2 be (wl,wu)-integrable. Verification of this 
condition is typically straightforward; for example, f 2 (x) is (wl,wu)-integrable if f = F ′ is 
uniformly bounded. Throughout the paper, we use wl = inf{x : F(x) > 0} and wu = sup{x :
F(x) < 1} to denote, respectively, the lower and upper bounds of the support of the noise distri-
bution F .

2.3. How do markups change with competition?

The next theorem is our key result: it characterizes, asymptotically, the equilibrium markup as 
a function of the noise distribution and the number of competing firms.13 Assume that F is well-
behaved, f 2 (x) is (wl,wu)-integrable, and the tail index satisfies −1.45 ≤ γ ≤ 0.64.14 Adopting 
standard notation, we write an ∼n→∞ bn (or simply an ∼ bn) if and only if limn→∞ an/bn = 1.

Theorem 1. The symmetric equilibrium markup in the Perloff–Salop model is, asymptotically 
(for n → ∞),

μn ∼ 1

nf
(
F

−1
(

1
n

))
� (γ + 2)

,

where F (x) ≡ 1 − F (x), and �(t) ≡ ∫∞
0 yt−1e−ydy is the standard Gamma function.

Theorem 1 allows us to calculate the equilibrium markup for various noise distributions. 
Markups for some common distributions are listed in Table 1, where distributions are presented 
in increasing order of tail fatness. At one extreme, the uniform distribution has the thinnest tails 
(γ = −1). The uniform distribution produces an asymptotic markup that is proportional to 1/n. 
In this case, competition dramatically reduces markups. Going down the table, as tail fatness 
increases, markups become less sensitive to n. This cursory inspection suggests a tight connec-
tion between the tail fatness and the impact of competition on markups. We state this point more 
precisely in the following proposition. It shows that the tail index γ in (6) has a concrete eco-
nomic implication: γ is the asymptotic elasticity of the markup with respect to the number of 
firms. In other words, interpreting n as a continuous variable, the markup behaves locally as 
μ ∼ knγ . Assume that the conditions in Theorem 1 hold, and further that f 2 (x) logF (x) is 
(wl,wu)-integrable.

Proposition 1. The asymptotic elasticity of the Perloff–Salop markup with respect to the number 
of firms n is

lim
n→∞

n

μn

dμn

dn
= γ.

The case γ < 0 consists of distributions with very thin tails. For these distributions, asymptotic 
elasticity is strictly negative: markups are sensitive to the number of firms n, even as n → ∞. 

13 The proof relies on Theorem 3, proven later; for expositional convenience, we start with the main economic results.
14 This is the range over which the second order condition holds (see the online appendix for details); the first order con-
dition holds whenever γ > −2. Note that this assumption on γ is not very restrictive. It permits thin-tailed distributions 
such as the Weibull, and all (fat-tailed) Pareto distributions with finite variance.
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The extreme case is the uniform distribution, with asymptotic elasticity γ = −1.15 The bounded 
power law and Weibull distributions are particularly flexible, and allow us to span the gamut of 
negative asymptotic elasticities within (−1, 0). One common feature of these distributions is that 
they have right-bounded support, so that consumers’ valuations of each good are bounded above 
by wu < ∞.

While all distributions with γ < 0 have right-bounded support (e.g., uniform, bounded power-
law, and Weibull), the converse is not true: there exist right-bounded distributions with zero 
asymptotic elasticity. Table 1 includes a bounded exponential-like distribution (see Gnedenko, 
1943; and Resnick, 1987, p. 39) where markups decrease very slowly for large n: specifically, as 
1/(logn)2. In other words, prices may be insensitive to additional competition in large markets, 
even in settings with bounded consumer valuations. These results are somewhat in contrast with 
those of Vives (1985), who shows that in a differentiated-product setting with bounded consumer 
valuations and additional assumptions about the substitutability of competing goods, asymptotic 
markup elasticities are large and negative (≤ −1) in the sense that markups go to zero at a rate 
of at least 1/n.16 In our model, such elasticities are only achieved in the extreme thin-tailed case 
of the uniform distribution.

At the other end of Table 1, for distributions with fatter tails than the exponential distribution, 
markups rise as the number of competitors increases. This set includes the fat-tailed, Pareto-like 
distributions, which have γ > 0; for these distributions, the asymptotic elasticity is strictly pos-
itive, so markups increase quite dramatically with n. It also includes some relatively fat-tailed 
distributions with γ = 0, such as the lognormal. Intuitively, for sufficiently fat-tailed noise, as n
increases, the difference between the best draw and the second-best draw, which is proportional 

to nf
(
F

−1
(1/n)

)
, increases with n (see also Section 2.4 below).17

Returning to the middle of Table 1, a wide range of distributions – those with interme-
diate tail fatness, γ = 0 – have zero asymptotic elasticity. This range encompasses cases of 
price-decreasing competition (e.g., Bounded Exponential-like, and Gaussian) as well as price-
increasing competition (e.g., lognormal). It encompasses cases of bounded and unbounded sup-
port. Within this range, Proposition 1 tells us that increased competition has remarkably little 
effect on markups in large markets.

2.3.1. Markup sensitivity: a numerical example
Consider the (relatively thin-tailed) case of Gaussian noise. In this case, the markup μn is 

proportional to 1/
√

lnn. Accordingly, μn converges to zero, but this convergence proceeds at a 
glacial pace.

To conceptually illustrate this slow convergence, we calculate μn when noise is Gaussian for a 
series of values of n. Table 2 shows that with Gaussian noise, a highly competitive industry with 

15 Distributions with tail index γ < −1 may be considered “thinner” than the uniform and have even larger negative 
asymptotic elasticities. However, they have the unattractive and unnatural feature that their density diverges at the (finite) 
upper bound of their support.
16 Relatedly, Mas-Colell (1975) shows in a setting where the space of product characteristics is compact that markups 
vanish as n → ∞ (see also Vives, 2001, Section 6.4).
17 This logic also explains why the exponential distribution, and asymptotic tail equivalents such as the Gumbel distri-
bution, demarcate the threshold between price-decreasing and price-increasing competition. For such distributions, the 
expected difference between the best draw and the second-best draw is asymptotically constant in n.
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Table 2
Markups with Gaussian noise and uniform noise.

n Markup with Gaussian noise Markup under Cournot Competition

10 1 1

100 0.61 0.1

1,000 0.47 0.01

10,000 0.40 0.001

100,000 0.35 0.0001

1,000,000 0.32 0.00001

Markups are calculated for (i) the symmetric equilibrium of the Perloff–Salop model for Gaussian noise and (ii) under 
Cournot Competition, for various values of the number of firms n, where n is the number of firms in the market. Markups 
are normalized to equal one at n = 10.

n = 1, 000, 000 firms (far more than in any realistic setting) will nonetheless retain a third of 
the markup of a relatively concentrated industry with only n = 10 competitors. We also compare 
markups in our model to those in the Cournot model, which features markups proportional to 
1/n and a markup elasticity w.r.t. n of −1 (note that this is equal to markups in the Perloff–Salop 
model with uniformly distributed noise).

More generally, in cases with moderate tail fatness, such as the Gumbel (i.e., logit), expo-
nential, and lognormal densities, the markup again shows little (zero asymptotic) response to 
changes in n. Nevertheless, the markups become unbounded for the lognormal distribution. Fi-
nally, the bounded exponential-like distribution shows that an infinite support is not necessary 
for our results. In this case the markup is asymptotically proportional to 1/(logn)2 and markup 
decay remains slow. In concrete terms, in markets with noisy demand and many competitors, one 
should not assume that increased competition dramatically reduces markups.

2.4. Limit pricing: an alternative interpretation

We now discuss an alternative model of oligopolistic competition, sometimes called “limit 
pricing”, which has proven to be very useful in trade and macroeconomics (e.g., Bernard et al., 
2003; see also Auer and Chaney, 2009). The price-setting mechanism in the limit pricing model 
is remarkably simple, yet it produces (asymptotically) the same markups as the Perloff and Sa-
lop (1985) model. This equivalence result implies that a similar logic underlies the equilibrium 
markups for these models, and thus generates a simple but useful interpretation of our economic 
results.

In the limit pricing model, each firm i draws an i.i.d. quality shock Xi . Firms simultaneously 
set prices pi after observing the other firms’ quality shocks. (This is in contrast with the Perloff 
and Salop (1985) model, where prices are set before taste shocks are observed.) The represen-
tative consumer purchases one unit of the good, and picks the firm which maximizes Xi − pi . 
As before, call Mn = maxi=1...n Xi the largest quality draw from the n firms, and Sn the second-
largest draw. In the competitive equilibrium, the firm with the highest quality, Mn, captures the 
entire market, and sets a markup of μLP

n = Mn − Sn. This is just enough to take all the market 
away from the firm with the second-highest quality.

The next proposition analyzes the equilibrium markup under Limit Pricing. We assume that 
F is well-behaved with tail index γ < 1, and that E [Xi] < ∞.



12 X. Gabaix et al. / Journal of Economic Theory 165 (2016) 1–24
Proposition 2. Let Mn and Sn be, respectively, the largest and second largest realizations of n
i.i.d. random variables with CDF F . Then limit pricing markup is μLP

n = Mn − Sn, and

E

[
μLP

n

]
∼n→∞

� (1 − γ )

nf
(
F

−1
(

1
n

)) . (7)

Notice that this markup is asymptotically proportional to the markup from Theorem 1. This 
suggests the following intuition for Theorem 1: to set its optimum price, a firm conditions 
on getting the largest draw, then evaluates the likely draw of the second highest firm and en-
gages in limit pricing, where it charges a markup equal to the difference between its draw and 
the next highest draw: E 

[
μLP

n

] ≈ Mn − Sn. (This is analogous to the analysis of a first-price 
sealed-bid auction.) In fact, this reasoning gets us approximately the correct answer: observe that 
E 
[
F (Mn)

] � 1
n+1 and E 

[
F (Sn)

] � 2
n+1 , which suggests that Mn (the highest draw) will be 

close to F
−1
(

1
n

)
and that Sn (the second-highest draw) will be close to F

−1
(

2
n

)
. So,

E

[
μLP

n

]
≈ Mn − Sn ≈ F

−1
(1/n) − F

−1
(1/n + 1/n)

≈ −1

n
·
(
F

−1
)′

(1/n) by Taylor expansion

= 1

nf
(
F

−1
(1/n)

) .

In fact, revisiting Theorem 1, we see that this heuristic argument generates the right approxima-
tion for the Perloff–Salop markups when γ = 0 (e.g. Gaussian, logit (Gumbel), exponential, and 
lognormal distributions), and that the approximation remains accurate up to a corrective constant 
for the other distributions.

2.4.1. An application to auctions
Our mathematical results can also be applied to the analysis of auctions. Consider a second-

price auction with a single good and n bidders where each bidder i privately values the good 
at Xi , which is i.i.d. with CDF F . It is well-known that if F is strictly increasing on (wl,wu), 
then in equilibrium each bidder bids his private valuation; the bidder with the highest valuation 
Mn wins and pays the second-highest valuation Sn. Proposition 2 then immediately implies that 
the expected surplus for the winner of the auction is18

E [Mn − Sn] ∼n→∞
� (1 − γ )

nf
(
F

−1
(1/n)

) . (8)

Other key quantities are also easily derived. For example, the seller’s expected revenue is

E [Sn] ∼n→∞ F
−1

(1/n)� (2 − γ ) if wu = ∞. (9)

For some applications of these results to large auction settings, see, e.g., Mangin (2015a).

18 The case γ �= 0 of result (8) appeared in Caserta (2002, Prop. 4.1). Her proof relied on a different argument.
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2.5. Consumer surplus

The random utility framework is sometimes criticized for generating an unrealistically high 
value for consumer surplus and social surplus. Indeed, if the noise distribution is unbounded (and 
the noise is treated as normatively meaningful taste shocks), then total consumer surplus tends to 
∞ as the number of firms increases. Our analytical results allow us to examine this criticism.

To perform welfare analysis in the Perloff and Salop (1985) model, in this subsection we 
interpret taste shocks as capturing preference heterogeneity among consumers. So our measure 
of consumer surplus is simply Xi − pi where Xi is the consumer taste shock and pi is the price 
for the purchased good. In this setting, expected consumer surplus is E [Mn] − p and expected 
social surplus is E [Mn] − c, where p is the equilibrium price and Mn ≡ maxi=1,...,n Xi is the 
largest quality draw from n firms. For brevity, we restrict ourselves to the case with unbounded 
distributions and γ ≥ 0.

We can show that E [Mn] ∼ � (1 − γ )F
−1

(1/n) for 0 ≤ γ < 1.19 For all the distributions 
that we study except the Pareto-like cases, F

−1
(1/n) rises only slowly with n. Hence, even for 

unbounded distributions, and large numbers of producers, surplus can be quite small. For exam-
ple, for the case of Gaussian noise when consumer preferences have a standard deviation of $1, 
F

−1
(1/n) ∼ √

2 lnn; with a million toothpaste producers, consumer surplus averages no more 
than $5.25 per tube. Hence, in many instances, the framework — even with unbounded distribu-
tions — does not generate counterfactual predictions about surplus or counterfactual predictions 
about the prices that cartels would set.

3. Detail-independence

This section demonstrates the robustness of our main findings from Section 2 to alternative 
assumptions about consumer preferences.

3.1. Alternative models

We briefly describe two alternative random-utility models and show that these models also 
obey the asymptotic markup rule of Theorem 1. These models differ from Perloff and Salop
(1985) in the specification of consumer preferences, but otherwise share common features: there 
is a single representative consumer and n firms, indexed as i = {1, . . . , n}. The timing is also 
the same: firms set prices simultaneously, before taste shocks are realized. As before, c is the 
marginal cost of production, pi is the price of good i, and the random shocks Xi associated with 
each good i are i.i.d. randomly distributed with distribution function F .

Sattinger (1984) analyzes the case of multiplicative random utility, where consumers demand a 
fixed dollar amount. There are two types of goods. Besides the monopolistically competitive mar-
ket, there is a composite good purchased from an industry with homogenous output. Our focus 
is on markups in the monopolistically competitive market. The consumer has utility function

U = Z1−θ

[
n∑

i=1

AiQi

]θ

, (10)

19 See Resnick (1987, p. 77, Proposition 2.1). Alternatively, this result is an immediate application of Theorem 3, which 
we present in Section 4.
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where Z is the quantity of the composite good, Ai = eXi is the random taste shock, and Qi is 
the quantity consumed of good i. The consumer faces the budget constraint y = qZ +∑i piQi , 
where y is the consumer’s endowment and q is the price of the composite good. In the online 
appendix, we show that the equilibrium markup in this model is

μSatt
n

c
= 1

n (n − 1)
∫

f 2(x)Fn−2(x) dx
= 1

nE
[
f (Mn−1)

] . (11)

Hart (1985b) analyzes a richer setup where consumers’ demand is flexible in quantity and value. 
In comparison, in the Perloff–Salop model, the quantity demanded is fixed; whereas in the Sat-
tinger model, expenditure is fixed. The consumer’s utility function is:

UHart = ψ + 1

ψ

(
n∑

i=1

AiQi

)ψ/(ψ+1)

−
n∑

i=1

piQi, (12)

where Ai = eXi is the associated random taste shock for good i and Qi is the quantity consumed. 
The equilibrium markup of the Hart (1985b) model is20

μHart
n

c
= 1

ψ + (n − 1)

∫
eψxf 2(x)Fn−2(x)dx∫
eψxf (x)Fn−1(x)dx

= 1

ψ + (n − 1)
E

[
eψMn−1f

(
Mn−1

)]
E

[
eψMn−1

]
. (13)

3.2. Comparing equilibrium markups

We now characterize equilibrium markups for the Sattinger (1984) and Hart (1985b) models. 
As in Theorem 1, we assume that F is well-behaved, and that f 2 (x) is [wl,wu)-integrable. For 
the Sattinger model, assume that −1.45 ≤ γ ≤ 0.64.21 For the Hart model with parameter ψ , as-
sume that −1 < γ ≤ 0; if γ = 0, we further require that 1 −ψa > 0.22 Denote the Perloff–Salop, 
Sattinger and Hart markups as, respectively, μn, μSatt

n , and μHart
n . The following theorem states 

that (up to the marginal cost factor c) all three markups are asymptotically equal; in fact, the 
Sattinger markup is exactly equal to the Perloff–Salop markup.

Theorem 2. The symmetric equilibrium markups in the Perloff–Salop, Sattinger and Hart models 
are asymptotically

μn = μSatt
n /c ∼ μHart

n /c ∼ 1

nf
(
F

−1
(

1
n

))
� (γ + 2)

, (14)

with F (x) ≡ 1 − F (x).

20 Note that in the special case ψ = 0, by comparing (11) with (13), we see that μHart
n = μSatt

n ; that is, the Hart model 
generates the same demand functions and markups as the Sattinger model.
21 As with the Perloff and Salop (1985) model, this is the range over which the second order condition holds (see the 
online appendix for details).
22 For distributions violating this condition, no symmetric price equilibrium can be calculated in the Hart model because 
each firm would face infinite demand.
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Table 3
Asymptotic expressions for Sattinger and Hart markups.

Distribution f μn = μSatt
n /c μHart

n /c limn→∞ μn

Uniform 1, x ∈ [−1,0] 1/n ∼ 1/n 0

Bounded Power Law α (−x)α−1

α ≥ 1, x ∈ [−1,0]
�(1−1/α+n)

α�(2−1/α)�(1+n)
∼ n−1/α

α�(2−1/α)
∼ n−1/α

α�(2−1/α)
0

Weibull α (−x)α−1 e−(−x)α

α ≥ 1, x < 0

1
α�(2−1/α)

n1−1/α

n−1 ∼ n−1/α

α�(2−1/α)
∼ n−1/α

α�(2−1/α)
0

Bounded Exponential-like e−x/(1−x)

(1−x)2

x ∈ [0,1]
∼ 1

(ln n)2 0

Gaussian (2π)−1/2 e−x2/2 ∼ (2 lnn)−1/2 0

Rootzen class, φ > 1 κλφxa+φ−1e−xφ ∼ 1
φλ1/φ (lnn)1/φ−1 0

Gumbel exp(−e−x − x) n
n−1 ∼ 1 1

Exponential e−x, x > 0 1 1

Rootzen Gamma τxτ−1e−xτ

x > 0, τ < 1
∼ 1

τ (lnn)1/τ−1 − ∞

Lognormal exp(−2−1 log2 x)

x
√

2π

x > 0

∼ 1√
2 ln n

e
√

2 ln n − ∞

Pareto αx−α−1

α > 1, x ≥ 1

�(1+1/α+n)
α�(2+1/α)�(1+n)

∼ n1/α

α�(2+1/α)
− ∞

Fréchet αx−α−1e−x−α

α > 1, x ≥ 0

1
α�(2+1/α)

n1+1/α

n−1 ∼ n1/α

α�(2+1/α)
− ∞

This table reproduces Table 1 and adds asymptotic markups for the Sattinger and Hart models. μn , μSatt
n and μHart

n are 
respectively the asymptotic markup expressions for the Perloff–Salop, Sattinger, and Hart models. Asymptotic approxi-
mations are calculated using Theorems 1 and 2 except where the markup can be exactly evaluated. The Hart markup is 
undefined for distributions fatter than the exponential.

Theorem 2 delivers the perhaps unexpected result that the Perloff and Salop (1985), Sattinger
(1984), and Hart (1985b) models generate asymptotically equal (up to a multiplicative constant) 
markups; see Table 3. Hence, detail-independence holds: equilibrium markups do not depend on 
the details of the model of competition. The key ingredient in the modeling is the specification 
of the noise distribution, rather than the details of the particular oligopoly model. In particular, 
these results suggest that the limit-pricing logic of Section 2.4 has broad applicability to random 
utility models of monopolistic competition.

4. Methodological results

This section presents our main mathematical results. Solving for the symmetric equilibrium 
outcome for distribution function F requires the evaluation of integrals of the form∫

xj eψxf k(x)F (x)n−ldx (15)

where k, l ≥ 1 and j, ψ ≥ 0. For large n, such integrals mainly depend on the tail of the distribu-
tion F , which suggests that techniques from Extreme Value Theory (EVT) may be applied. (See 
Resnick, 1987, and Embrechts et al., 1997 for an introduction to EVT.)
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Before evaluating (15), we first introduce the notion of regular variation.

Definition 3. A function h : R+ → R is regularly varying at ∞ with index ρ if h is strictly 
positive in a neighborhood of ∞, and

∀λ > 0, lim
x→∞

h(λx)

h (x)
= λρ. (16)

We indicate this by writing h ∈ RV ∞
ρ .

Analogously, we say that h : R+ → R is regularly varying at zero with index ρ if, ∀λ > 0, 
limx→0 h (λx) /h (x) = λρ , and denote this by h ∈ RV 0

ρ . Intuitively, a regularly varying function 
h (x) with index ρ behaves like xρ as x goes to the appropriate limit, perhaps up to logarithmic 
corrections. For instance, xρ and xρ |lnx| are regularly varying (with index ρ) at both 0 and ∞. 
Much of our analysis requires the concept of regular variation; specifically, we require that certain 
transformations of the noise distribution F be regularly varying. In the case ρ = 0, we say that h
is slowly varying (for example, lnx varies slowly at infinity and zero).

Our core mathematical result documents an asymptotic relationship between Mn and 
F

−1
(1/n).

Theorem 3. Let F be a differentiable CDF with support on (wl,wu) that is strictly increasing in 
a left neighborhood of wu. Let G : (wl,wu) → R be strictly positive in some left neighborhood 

of wu. Suppose that Ĝ (t) ≡ G 
(
F

−1
(t)
)

∈ RV 0
ρ with ρ > −1, and that 

∣∣Ĝ (t)
∣∣ is integrable 

on t ∈ (t,1
)

for all t ∈ (0,1) (or, equivalently, G (x)f (x) is (wl,wu)-integrable in the sense of 
Definition 2). Then, for n → ∞,

E [G(Mn)] =
wu∫

wl

nG(x)f (x)F (x)n−1dx ∼ G

(
F

−1
(

1

n

))
� (ρ + 1) (17)

where Mn is the largest realization of n i.i.d. random variables with CDF F .

We provide some intuition for equation (17). Note that Mn is the maximum of n F -distributed 
random variables and exceeds an independent F -distributed random variable n times out of 
n + 1. In other words, E [F (Mn)] = n

n+1 , or equivalently E 
[
F (Mn)

] = 1
n+1 ≈ 1

n
. Conse-

quently, we might conjecture – via heroic commutation of the expectations operator – that 

E [Mn] ≈ F
−1
(

1
n

)
, and more generally that E [G(Mn)] ≈ G (E [Mn]) ≈ G 

(
F

−1
(

1
n

))
. It turns 

out that this heuristic argument gives us the correct approximation, up to a correction factor 
� (ρ + 1).23

We next present an intermediate result that is neither novel (see Pickands, 1986) nor techni-
cally demanding, but allows us to apply Theorem 3 to expressions of the form (15). The proof is 
straightforward, and consequently omitted.

23 Notice that the correction is downward if 0 < ρ < 1, and upward otherwise. Informally, this is because G 
(
F

−1
(x)
)

behaves like xρ close to x = 0; so G 
(
F

−1
(x)
)

is approximately concave near zero if 0 < ρ < 1, and approximately 

convex near zero otherwise. Jensen’s inequality then suggests that for large n, E [G(Mn)] = E 
[
G
(
F

−1 (
F (Mn)

))]
is 

smaller than G 
(
F

−1 (
E
[
F (Mn)

]))≈ G 
(
F

−1
(1/n)

)
, necessitating a downward correction, if and only if 0 < ρ < 1.
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Lemma 1. Let F be well-behaved with tail index γ . Then

1. f
(
F

−1
(t)
)

∈ RV 0
γ+1.

2. If wu = ∞, then F
−1

(t) ∈ RV 0−γ . If wu < ∞, then wu − F
−1

(t) ∈ RV 0−γ .

3. If a is finite, then eF
−1

(t) ∈ RV 0−a .

Lemma 1 ensures that when F is well-behaved, (15) satisfies the conditions imposed in The-
orem 3 for a wide range of parameter values. The following proposition is then an immediate 
implication of Theorem 3 and Lemma 1.

Proposition 3. Let F be well behaved with tail index γ . Let j, ψ ≥ 0, k ≥ 1 and let xj eψxf k(x)

be (wl,wu)-integrable. If j > 0, assume that wu > 0. If ψ = 0, we can treat ψa = 0 in the 
following expressions. If (k − j − 1) γ − ψa + k > 0, then as n → ∞,

wu∫
wl

xj eψxf k(x)F (x)n−ldx

∼

⎧⎪⎨⎪⎩n−1
(
F

−1
(1/n)

)j

eψF
−1

(1/n)f k−1
(
F

−1
(1/n)

)
� ((k − j −1) γ −ψa + k) : wu =∞

n−1w
j
ueψwuf k−1

(
F

−1
(1/n)

)
� ((k − 1) γ + k) : wu < ∞

.

Proposition 3 allows us to approximate (15) for well-behaved distributions.24 The parameter 
restriction (k − j − 1) γ − ψa + k > 0 is necessary to ensure that (15) does not diverge. For our 
purposes, this restriction is rather mild. One notable exception is that when ψ > 0, we cannot an-
alyze heavy-tailed distributions (which have fatter-than-exponential tails) such as the lognormal 
distribution; for these distributions, a = ∞.25

In fact, Theorem 1 is now an immediate corollary of Proposition 3. More generally, these 
results are relatively easy to apply. For example, the key mathematical objects in Theorem 1, 

γ and nf
(
F

−1
(1/n)

)
, are easy to calculate for most distributions of interest, and are listed for 

commonly used distributions in Table 4. The following fact, which is verified using Lemma A1.6, 
may often be useful to simplify calculations further for the case γ �= 0: as n → ∞,

1

nf
(
F

−1
(1/n)

) ∼
{

γF
−1

(1/n) , γ > 0

−γ (wu − F
−1

(1/n)), γ < 0
.

5. Conclusion

Random utility models are a convenient and tractable tool for analyzing settings of imperfect 
competition. The choice of noise distributions in random utility models is often influenced by 

24 For a antecedent to this result, see Maller and Resnick (1984).
25 Here we define a distribution to be heavy-tailed if eλxF (x) → ∞ as x → ∞ for all λ > 0. To see why a = ∞ in 
this case, note that limx→∞ F (x) /f (x) = ∞ implies − d

dx
logF (x) = o (1) as x → ∞, so − logF (x) = o (x) and 

e−λx = o
(
F (x)

)
for all λ.
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Table 4
Properties of common densities.

Name of distribution f γ nf
(
F

−1
(1/n)

)
F

−1
(1/n)

Uniform 1, x ∈ [−1,0] −1 n − 1
n

Bounded Power Law α (−x)α−1 , α ≥ 1, x ∈ [−1,0] −1/α αn1/α −n−1/α

Weibull α(−x)α−1e−(−x)α ,α ≥ 1, x < 0 −1/α αn1/α ∼ −n−1/α

Bounded Exponential-like e−x/(1−x)

(1−x)2 , x ∈ [0,1] 0 (1 + lnn)2 1 − 1
1+log n

Gaussian (2π)−1/2e−x2/2 0 ∼ √
2 lnn ∼ √

2 lnn

Rootzen Class κλφxa+φ−1e−xφ
, x > 0, φ > 1 0 ∼ φλ1/φ (lnn)1−1/φ ∼ (lnn)1/φ

Gumbel exp(−e−x − x) 0 ∼ 1 ∼ lnn

Exponential e−x, x > 0 0 1 lnn

Lognormal (2π)−1/2x−1e
−
(

log2 x
)
/2

, x > 0 0 ∼
√

2 ln n

F
−1

(1/n)
∼ e

√
2 ln n

Pareto αx−α−1, α > 0, x ≥ 1 1/α αn−1/α n1/α

Fréchet αx−α−1e−x−α
, α > 0, x ≥ 0 1/α αn−1/α ∼ n1/α

Densities are listed in order of increasing tail fatness whenever possible.

tractability concerns. It is important to understand the consequences of these modeling choices 
and, when possible, to expand the set of tractable models. With this challenge in mind, our paper 
makes three sets of contributions.

First, we derive equilibrium markups for general noise distributions in various types of ran-
dom utility models of monopolistic competition in large markets. We show that markups are 
asymptotically determined by the tail behavior of the distribution of taste shocks.

Second, our results reveal a substantial degree of “detail-independence.” Specifically, the be-
havior of price markups are asymptotically identical (up to a constant factor) for all models that 
we study. Moreover, for the wide class of distributions with a zero extreme value tail exponent 
– including the canonical case of Gaussian noise – we show that the elasticity of markups to the 
number of firms is asymptotically zero. In other words, for many types of large markets, markups 
are relatively insensitive to the degree of competition.

Third, we show how to approximate an integral that is useful for studying a wide range of 
economic environments in which extreme outcomes determine the equilibrium allocation. For 
example, our framework can be used to model imperfect competition in large economies, includ-
ing applications in macroeconomics and trade.

Our analysis is agnostic about the source of noise in consumer choice. The noise may reflect 
either heterogenous preferences with normative validity or consumer confusion about product 
quality. Thus, our results are relevant to both the classical literature on imperfect competition and 
the emerging literature on behavioral industrial organization. That said, we find the behavioral in-
terpretation that noise arises from consumer mistakes particularly intriguing. Consumer errors in 
product evaluation may arise from a variety of mechanisms. Let us briefly outline two hypothe-
ses. First, firms may engage in obfuscation to confuse naive (boundedly rational) consumers 
about product quality.26 This point is developed in a number of recent papers, including Spiegler
(2006), Gabaix and Laibson (2006), Ellison and Ellison (2009), Armstrong and Vickers (2012), 

26 Our basic model exogenously specifies the degree of “obfuscation”. In the online appendix, we augment our model to 
consider deliberate shrouding/obfuscation by sellers, and show that our key insights are preserved in this richer setting.
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and Heidhues et al. (2014, 2016).27 Second, consumers may be influenced by a multitude of id-
iosyncratic behavioral cues in their decision-making. For example, a consumer who is evaluating 
a mutual fund may rely on otherwise uninformative ‘tips’ from his friends and family.

Outside the scope of the present paper, but of definite interest for future work, is to allow for 
firm heterogeneity in the model. The analysis of asymmetric outcomes in large markets intro-
duces additional mathematical challenges, but may produce further insights. Such an extension 
would allow us to address some stylized facts about competition in large monopolistically-
competitive markets, such as variation in markups across firms. It could also potentially lead 
to a richer set of testable empirical implications.

Appendix A. Proofs

This appendix proves the methodological results from Section 4, then applies them to prove 
the economic results of Sections 2 and 3. To clarify notation: denote fn ∼ gn if fn/gn → 1, 
fn = o(gn) if fn/gn → 0 and fn = O(gn) if there exists M > 0 and n′ ≥ 1 such that for all 
n ≥ n′, |fn| ≤ M |gn|.

A.1. Methodological results

We start by collecting some useful facts about regular variation; for background, see Resnick
(1987) or Bingham et al. (1989).

Lemma A1.

1. If g (t) ∈ RV 0
a , then the limit limt→0 g (xt) /g (t) = xa holds locally uniformly (with respect 

to x) on (0,∞).
2. If limx→0 h(x)/s(x) = 1, limx→0 s (x) = 0 and g(x) ∈ RV 0

ρ , then g(h(x)) ∼ g(s(x)).

3. If g (t) ∈ RV 0
a and h (t) ∈ RV 0

b , then g (t)h (t) ∈ RV 0
a+b .

4. If g (t) ∈ RV 0
a , h (t) ∈ RV 0

b and limt→0 h (t) = 0, then g ◦ h (t) ∈ RV 0
ab .

5. If g (t) ∈ RV 0
a and non-decreasing, then g−1 (t) ∈ RV 0

a−1 if limt→0 g (t) = 0.

6. Let U ∈ RV 0
ρ . If ρ > −1 (or ρ = −1 and 

∫ x

0 U (t) dt < ∞), then 
∫ x

0 U (t) dt ∈ RV 0
ρ+1 and

lim
x→0

xU (x)∫ x

0 U (t) dt
= ρ + 1.

If ρ ≤ −1, then for x > 0, 
∫ x

x
U (t) dt ∈ RV 0

ρ+1 and

lim
x→0

xU (x)∫ x

x
U (t) dt

= −ρ − 1.

7. If limt→∞ tj ′(t)/j (t) = ρ, then j ∈ RV ∞
ρ . Similarly, if limt→0 tj ′(t)/j (t) = ρ, then j ∈

RV 0
ρ .

8. If g ∈ RV ∞
ρ and ε > 0, then g (t) = o

(
tρ+ε

)
and tρ−ε = o (g (t)) as t → ∞; and if g ∈ RV 0

ρ

and ε > 0, then g (t) = o
(
tρ−ε

)
and tρ+ε = o (g (t)) as t → 0.

27 Relatedly, other papers (e.g. Bordalo et al., 2016) emphasize the impact of endogenous salience on market equilib-
rium.
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Proof. See the online appendix. �
Our proof of Theorem 3 depends critically on the following seminal result.

Theorem A1 (Karamata’s Tauberian Theorem). Assume U : (0,∞) → [0,∞) is weakly in-
creasing. Let Ũ(s) = ∫∞

0 e−sxdU (x) be the Laplace–Stieltjes transform of U(x), and assume 
Ũ (s) < ∞ for all sufficiently large s. Then with α ≥ 0, U(x) ∈ RV 0

α if and only if Ũ(s) ∈ RV ∞−α . 
Further, if either condition holds, then

∞∫
0

e−sxdU (x) ∼s→∞ U (1/s)� (α + 1) .

For a proof, see Bingham et al. (1989, pp. 38, Th. 1.7.1’) or Feller (1971, XIII.5, Th. 1).

Proof of Theorem 3. Assume for now that G (x) ≥ 0 for all x ∈ (wl,wu); we relax this as-
sumption later. Differentiation of P (Mn ≤ x) = Fn (x) gives the density of Mn: fn(x) =
nf (x)Fn−1(x). Using the change of variable x = F

−1
(t) and observing that dF

−1
(t) /dt =

−1/f
(
F

−1
(t)
)

E [G(Mn)] =
wu∫

wl

G(x)nf (x)Fn−1(x)dx

= n

wu∫
wl

G(x)Fn−1(x) (f (x)dx)

= n

1∫
0

G(F
−1

(t))[F(F
−1

(t))]n−1dt

= n

1∫
0

Ĝ (t) (1 − t)n−1 dt.

We next use the change in variables x = − ln (1 − t), so t = 1 − e−x , dt = e−xdx, and so

E [G(Mn)] = n

∞∫
0

Ĝ
(
1 − e−x

)
e−xe−n′xdx

where n′ = n − 1. Define h (x) = Ĝ
(
1 − e−x

)
e−x , and μ(x) = ∫ x

0 h (y) dy. Since Ĝ is regularly 
varying at zero with index ρ > −1, Lemma A1.8 implies that 

∫ s

0

∣∣Ĝ (t)
∣∣dt < ∞ for sufficiently 

small s. This, with the assumptions G (t) ≥ 0 and 
∫ 1
s

∣∣Ĝ (t)
∣∣dt < ∞ for all s ∈ (0,1), ensure that 

μ(x) = ∫ 1−e−x

0 Ĝ (t) dt is finite and non-decreasing on [0,∞). By Lemma A1.2, h (x) ∼x→0

Ĝ(x). So h ∈ RV 0
ρ , and by Lemma A1.6
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μ(x) =
x∫

0

h(y) dy ∼x→0
1

1 + ρ
h(x)x ∼x→0

1

1 + ρ
Ĝ(x)x.

Therefore, μ(x) ∈ RV 0
ρ+1. Noting our assumption that ρ + 1 > 0, we can now apply Karamata’s 

Theorem A1 in combination with the last expression to obtain

∞∫
0

e−n′xdμ(x) ∼n′→∞ μ
(
1/n′)� (2 + ρ)

∼n′→∞
1

1 + ρ
Ĝ
(
1/n′) (n′)−1

� (2 + ρ)

∼n→∞ Ĝ (1/n)n−1� (1 + ρ) .

Thus

E [G(Mn)] = n

∞∫
0

e−n′xdμ(x)

∼ nĜ (1/n)n−1� (1 + ρ) = G(F
−1

(1/n))� (1 + ρ)

holds when G (x) ≥ 0 for all x ∈ (wl,wu). Now relax the assumption that G (x) ≥ 0 for all 
x ∈ (wl,wu). Choose t ∈ (0,1) such that G (t) > 0 for t ∈ [0, t

]
. The assumption that G (·) is 

strictly positive in a left neighborhood of wu ensures that such t exists. Thus we can write

E [G(Mn)] = n

t∫
0

Ĝ (t) (1 − t)n−1 dt + n

1∫
t

Ĝ (t) (1 − t)n−1 dt

Consider G̃ : (0,1) → R defined by

G̃ (t) ≡
{

Ĝ (t) : t ≤ t

0 : t > t
.

It is easy to check that G̃ satisfies the conditions of the theorem and additionally is weakly 
positive everywhere on (wl,wu). The argument above shows that as 1/n → 0

n

t∫
0

Ĝ (t) (1 − t)n−1 dt = n

1∫
0

G̃ (t) (1 − t)n−1 dt

∼ G̃ (1/n)� (1 + ρ) ∼ Ĝ (1/n)� (1 + ρ) . (18)

To complete the proof we demonstrate that as n → ∞∣∣∣∣∣∣∣
1∫

t

Ĝ (t) (1 − t)n−1 dt

∣∣∣∣∣∣∣= o

⎛⎜⎝ t∫
0

Ĝ (t) (1 − t)n−1 dt

⎞⎟⎠ .

First, by (18): for n → ∞,
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t∫
0

Ĝ (t) (1 − t)n−1 dt ∼ n−1Ĝ (1/n)� (1 + ρ) ∈ RV ∞−ρ−1.

Lemma A1.8 implies that 
∫ t

0 Ĝ (t) (1 − t)n−1 dt > n−ρ−1−ε for sufficiently large n and given 
some ε > 0. Also,∣∣∣∣∣∣∣

1∫
t

Ĝ (t) (1 − t)n−1 dt

∣∣∣∣∣∣∣≤
1∫

t

∣∣Ĝ (t)
∣∣ (1 − t)n−1 dt

≤ (1 − t
)n−1

1∫
t

∣∣Ĝ (t)
∣∣dt

≤ (1 − t
)n−1

1∫
0

∣∣Ĝ (t)
∣∣dt.

By assumption 
∫ 1
s

∣∣Ĝ (t)
∣∣dt < ∞ for all s ∈ (0,1), therefore∣∣∣∫ 1

t
Ĝ (t) (1 − t)n−1 dt

∣∣∣∫ t

0 Ĝ (t) (1 − t)n−1 dt
≤
(
1 − t

)n−1 ∫ 1
0

∣∣Ĝ (t)
∣∣dt

n−ρ−1−ε
= o (1) as n → ∞.

This completes the proof. �
Proof of Proposition 3. Follows immediately from Theorem 3 and Lemma 1. �
A.2. Economic results: markups, elasticities, and auctions

Proof of Theorem 1. Follows immediately from Proposition 3. �
Proof of Proposition 1. Treating n as continuous, we have

n

μPS
n

dμPS
n

dn
= −

(
2n − 1

n − 1
+ n

∫
f 2 (x)F n−2 (x) logF (x)dx∫

f 2 (x)F n−2 (x) dx

)
.

Noting that − log (1 − x) ∼ x ∈ RV 0
1 , applying Theorem 3 to G (x) ≡ f (x)

F (x)
logF (x), using 

Lemma A1.3, we obtain∫
f 2(x)Fn−2(x) logF(x)dx ∼ −n−2f

(
F

−1
(1/n)

)
�(3 + γ ).

Together with Theorem 1, it follows that

n

μn

dμn

dn
= −

⎛⎝2 −
n−2nf

(
F

−1
(1/n)

)
�(3 + γ )

n−2nf
(
F

−1
(1/n)

)
�(2 + γ )

+ o (1)

⎞⎠= γ + o (1) . �

Proof of Proposition 2. See the online appendix. �
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Proof of Theorem 2. The Sattinger case follows directly from Proposition 3. For the Hart case, 
see the online appendix. �
Appendix. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2016.04.001.
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