Big-Bang Reforms

Anton Kolotilin and Hongyi Li (UNSW)

June 2024

Entangled systems

* Complicated systems: accumulate design elements incrementally

Entangled systems

Complicated systems: accumulate design elements incrementally

Elements are interdependent (entangled with each other).

Entanglements inhibit change

Change may be delayed — inefficiencies persist and accumulate

Examples:

* Software: MS-DOS — Windows — Windows 95 ...
* Public policy: tax, healthcare

This paper:

When complicated, entangled systems face continuous pressure to change,
¢ Should they adapt continuously?
® Or abruptly and dramatically?

This paper:

When complicated, entangled systems face continuous pressure to change,
¢ Should they adapt continuously?
® Or abruptly and dramatically?

Applications to various settings:
® organizations
* public policy

* software development

The Model

® Time is continuous, t > 0.
® System S, is a mass of infinitesimal (dm — 0) elements.
® Each element is characterized by its:

vintage quality
(time of birth) (good or bad) (hidden position in network)

How elements work

* Designer adds and deletes elements over time.
® Each element is initially good, randomly turns bad at rate A > 0.

¢ Bad elements remain bad forever (until deletion).

How elements work

* Designer adds and deletes elements over time.
® Each element is initially good, randomly turns bad at rate A > 0.

¢ Bad elements remain bad forever (until deletion).

* Designer’s flow payoft:

= mg(t) — ¢ mg(¥)
NS N s
mass of mass of

good elements bad elements

® Myopic Designer seeks to maximize

E[@]
dr |’

Friction

* Each newborn element randomly, immutably endowed with directed
links fo existing elements:

each new element — each existing element
depends on

with probability x - dm.
e Friction: whenever element x is deleted,

all dependents (y — x),
dependents of dependents (z — y — x), etc

are also instantly deleted.

Control

At each instant £, the designer may:
add new (good) elements at bounded rate a, € [0, «] (mass per unit time).

* delete any elements in S,.
all direct + indirect dependents of deleted elements also instantly deleted.

*

* no rate constraint: can delete discrete mass of elements instantly.

Designer’s information set

The Designer:
® Observes the type (good/bad) and vintage 7 < t of each element in §,.

¢ Understands the network formation process,
but doesn’t observe time-t network.

* Upon deleting element, immediately observes deletion of its dependents.

Dependency network: summary of features

* Homogenous, ‘detail-free’ network;

elements are distinguished only by their (ordinal) vintage and kind.

¢ Entanglement is ‘limited”:

no ‘runaway’ chain deletions.

* Entanglement is ‘nonlocal”:

pairs of elements with widely differing vintages may be linked.

Smoothing out the System

At limit dm — 0, time-f system is characterized by

Density pg(7) > 0 of elements
for each vintage 7 € [0, t] and each kind K € {B, G}

t
with j Yx (1) = my.
0

good bad

=t

Smoothing out the System

At limit dm — 0, time-f system is characterized by

Density pg(7) > 0 of elements
for each vintage 7 € [0, t] and each kind K € {B, G}

t
with j Yx (1) = my.
0

good bad

=t

(At the limit dm — 0, system evolves deterministically.)

Preliminaries: Simple Strategies

In the optimal strategy,
® Good elements are added at maximal rate: a(t) = «.

* Only bad elements are directly deleted.

u
good bad 7 direct delete

“7

.

=t

So, designer effectively chooses which vintages of bad elements to (directly)
delete.

Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

u

good bad
ak

=t

Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

u
good bad ~ direct delete

a

Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

u
good bad [direct del. indirect del.

a

Preliminaries: Indirect Deletions

Recall: when some elements are directly deleted,
their dependants will immediately be indirectly deleted.

u

good bad
at

=t

Last-In First-Out
The myopic designer optimally plays a threshold strategy 7(S,) € [0, t]:

at each instant t, delete all bad elements with vintage > T(S,).

good bad | direct delete

=t

~l

Intuition: recently added elements have fewer dependants, so are “cheap” to
delete

Last-In First-Out
The myopic designer optimally plays a threshold strategy 7(S,) € [0, t]:

at each instant t, delete all bad elements with vintage > T(S,).

good bad // direct delete

=t

~l

Intuition: recently added elements have fewer dependants, so are “cheap” to

delete

Dynamics

Starting from ¢ = 0:

Low-Hanging Fruit

The most recent mass 7 of elements is constantly cleansed, where

m =log((1 + ¢)/x).

good bad g gradual deletion

/

=t

Low «x: gradual reforms only

Ifx < cAa,
total mass approaches steady-state, never exceeds threshold m:

system remains in gradual-cleansing mode forever.

=t

Leaking Out

Ifx > cA/a,
Some elements get past the threshold m,

where deletions are delayed —

good bad g gradual deletion

Big-Bang Reform

Until, after some delay,

All bad elements are deleted in an instant.

=t

Big-Bang Reform

Until, after some delay,

All bad elements are deleted in an instant.

=t

Big-Bang Reform

Until, after some delay,

All bad elements are deleted in an instant.

Cycles

Then, the cycle reboots.

=

Cycles

Then, the cycle reboots.

good bad g gradual deletion

/

=t

Cycles

mass

Optimal Dynamics

Big-Bang Reforms are optimal iff « > cA/«, i.e.

O entanglement (k) is high.

@® cost of retaining bad elements (c) is low.
© productivity of designer («) is high.

@ good elements turn bad slowly (A is low).

Friction over the cycle.
Recall: 72(t) = mg — ¢ - my.

So, delete elements only when friction is low:

5a/0 < c.

friction

good bad / targeted deleted

s

=

=t

The shape of friction.

Given last-in-first-out rule,
Friction is quasi-concave in scale of deletion:

Friction is low iff very few/many elements deleted.

f

“Excavation” effect

Suppose: at each time ¢, designer chooses threshold vintage 7(t),

deletes all (good + bad) elements w/ vintage > 7(t).

good bad // direct delete

i y

=t

~|

Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage
which increases with older vintages;

= friction strictly decreases with scale.

good bad /~ direct delete

Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage
which increases with older vintages;

= friction strictly decreases with scale.

good bad // direct delete

=t

~|

Archaeological Economics

In this setting:
Marginal friction = good:bad ratio at threshold vintage
which increases with older vintages;

= friction strictly decreases with scale.

good bad / direct delete

=t

~|

Untangling effect

Consider a “simple” distribution:
elements older (younger) than 7 are all bad (good).

how does marginal friction change with deletion threshold 7 < 7?

=t

~| -

Untangling effect

Consider a “simple” distribution:
elements older (younger) than 7 are all bad (good).

how does marginal friction change with deletion threshold 7 < 7?

| e

=t

~|

Untangling effect

As more bad elements deleted:
fewer good elements remain
= the marginal (bad) deleted element has fewer (good) dependents

= friction decreases with scale.

I

=t

~|

Untangling effect

As more bad elements deleted:
fewer good elements remain
= the marginal (bad) deleted element has fewer (good) dependents

= friction decreases with scale.

g 7§

=t

~

Untangling effect

As more bad elements deleted:
fewer good elements remain
= the marginal (bad) deleted element has fewer (good) dependents

= friction decreases with scale.

=t

~

Untangling effect

As more bad elements deleted:
fewer good elements remain
= the marginal (bad) deleted element has fewer (good) dependents

= friction decreases with scale.

=t

~

Why Big-Bang Reforms

Two forces drive big-bang reforms:
* “Excavation” effect and “untangling” effect.

* Parallel forces: each drives big-bang reforms even even in isolation.

* With non-myopic designer, third force emerges: intertemporal tradeoffs
lead, again, to big-bang reforms

Take-away points:

* Multiple “parallel” mechanisms - big-bang reforms are a relatively robust
phenomenon.

* Big-bang reforms are optimal iff system is complicated (high «).

© Appendix: Laws of Motion

Laws of motion

At each instant t, the Designer chooses
for each vintage 7 and each kind K ¢ {B, G},

gradual deletions 8,(7,t) and jump deletions A (7, f)

cubits / second cubits

Laws of motion

At each instant t, the Designer chooses
for each vintage T and each kind K € {B, G},

gradual deletions 8,(7,t) and jump deletions A (7, f)

cubits / second cubits

to control the system (p(7, t), ug(7, t)) via

dug(t,t) = - dug(r,ydt - Bglr,dt - Aglt,t) ,
decay gradual removal jump removal
dug(t,t) = + Aug(t, t)dt - Bg(r,)dt - Ag(r,t)

decay gradual removal jump removal

Laws of motion

At each instant t, the Designer chooses
for each vintage 7 and each kind K € {B, G},

gradual deletions 8,(7,#) and jump deletions A (7, £)

cubits / second cubits

subject to frictional constraints: for each Q € {B, G},

T,t Ag(t,t
Po®d . 9p(r,) and o8 f(kAD(T, 1))
#Q(t) ot [/lQ(t)
rate constraint jump constraint

where f(x) =1 - ¢ " and

pr= Y JT(Jt/}Q(T,t')dt'Jr Y Aqmt))de,

QeBGH 70 T e

mass of deleted elements older than 7

	Intro
	

	Model
	

	Preliminaries
	

	Dynamics
	

	Appendix: Laws of Motion
	

