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Abstract
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1 Introduction

In the early 20th century, a new school of psychology emerged that challenged prevail-

ing notions regarding human perception. The so-called Gestalt theorists, such as Max

Wertheimer, realized that there is a fundamental difference between perceiving the parts

of a picture and perceiving its whole. People may struggle to see the big picture. We have

all had that “aha” moment where a scene suddenly becomes clear (see Figure 1(a) for an

example). In addition to the struggles all people have with seeing the whole, neuroscien-

tists have classified a variety of disorders (“agnosias”) such as face blindness (“prosopag-

nosia”), where individual facial features—eyes, nose, and mouth—are recognizable but it

is difficult or impossible to put a name to the face. As Gazzaniga et al. (2014) put it, “it’s

somewhat like going to Legoland and—instead of seeing the integrated percepts of build-

ings, cars, and monsters—seeing nothing but piles of legos.” On the flipside, Gestalt psy-

chologists observed that people may integrate the parts into a whole in multiple ways—a

phenomenon known as perceptual rivalry. A famous example is the rabbit-duck illusion

(Figure 1(b)), where some people see a rabbit, while others perceive a duck.

(a) Most people do not see all five horses
immediately.

(b) The Rabbit-Duck Illusion

Figure 1
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The main focus of the Gestalt psychologists was visual perception, but their insights

apply more broadly. In many domains, people have all of the information needed to

draw a conclusion yet fail to connect the dots. Consider Fermat’s Last Theorem, which

remained unproven for over three centuries despite the best efforts of mathematicians.1

This contrasts sharply with standard economic models, which assume that agents have

perfect information processing capabilities and can immediately derive all logical conse-

quences of their knowledge.

Understanding how people connect the dots—or fail to connect the dots—is central

to understanding economic decision-making. People are flooded with data; but to take

action, they need to make sense of it. In other words, they need a big-picture view—

which may usefully be termed a “narrative” (see Shiller (2017)). Take the 2008 financial

crisis. One narrative took hold regarding rising house prices—that they were driven by

fundamentals—rather than an alternative—that there was a speculative frenzy and loose

lending standards. The lack of a compelling story can keep people from taking action.

This may explain why defaulting people into savings plans tends to increase enrollment

(see Madrian and Shea (2001) and Thaler and Benartzi (2004)).

This paper develops a framework for understanding how people analyze pieces of

information and reason their way to a big picture. We also aim to understand how a big

picture informs an agent’s view of the parts.

We consider a model in which an agent is presented with a picture consisting of a

grid of black and white pixels. Their task is to identify the features of the picture. We

define a feature as any pattern that applies to some region of the picture. For instance,

a feature might identify the color of a particular pixel, or it might identify whether the

picture depicts a smiley face.

The agent has a knowledge set—to which they may add over time—consisting of fea-

1Fermat’s Last Theorem was deducible from the rules of arithmetic. Mathematicians had everything they
needed to establish the theorem—they had the “pixels.” However, for 358 years, it was not clear to math-
ematicians whether Fermat’s conjecture was true; and the proof Andrew Wiles ultimately provided was
complex, involving branches of mathematics (such as modular elliptic curves) unknown to Fermat. Thus,
“connecting the dots” was a non-trivial process.
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tures that they think apply to the picture. The agent initially knows the color of each

pixel, but they do not know any features of larger regions of the picture. In this sense, the

agent starts with complete information about the picture but no understanding of what it

represents (e.g. “it’s a smiley-face”).

The agent learns about the picture by loading existing knowledge into working mem-

ory and drawing conclusions. For instance, if the agent loaded into working memory “the

number of white pixels is even” and “the number of white pixels is prime,” they would

conclude that “there are two white pixels.” Each period, the conclusions the agent draws

are added to their knowledge set.2

Importantly, the agent has limited working memory, which restricts the amount of

knowledge they can load into working memory and bounds their ability to draw con-

clusions. This constraint means, for instance, that the agent cannot immediately deduce

all of the picture’s features simply by loading their knowledge of every pixel’s color into

working memory. We assume that the agent is endowed with a code that maps features

to binary strings (such as “1101” or “1”), and that each feature takes up working-memory

space equal to the length of its codeword.3

We consider two variants of the model. In the first, the conclusions the agent draws are

purely deductive, while in the second, the agent extrapolates. The pure-deduction model

yields three key insights. First, the agent may develop only a piecemeal understanding

of the picture. They may, like a person with face blindness, recognize various parts of the

2We use the term “working memory” in the way that it is employed by computer scientists: to refer to
short-term memory used for processing data. Cognitive scientists, however, use this term to refer to a
specific brain system involving conscious awareness, which is divided into components (see Gazzaniga
et al. (2014)): the phonological loop (for verbal information), the visuospatial sketchpad (for visual and
spatial information), and the central executive (which coordinates attention and integrates information
across these systems). For unconscious brain systems that temporarily store and manipulate information,
cognitive scientists use a separate term, “implicit memory.” In our framework, we abstract between these
two types of brain systems (conscious and unconscious).

3Cognitive scientists and neuroscientists have shown that the brain relies on encoding to manage complex
information. For instance, Baddeley and Hitch (1974) suggest that information is compartmentalized and
transformed through encoding processes to reduce cognitive load. This idea is supported by findings on
chunking (discussed in Section 2.4), where individuals condense data into compact units, and by Lev-
els of Processing Theory (Craik and Lockhart (1972)), which highlights the importance of transforming
information to deepen processing and improve memory retention.
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picture but fail to integrate them and see the whole.

Second, some conclusions can only be reached in multiple steps. The reason the agent

can see more in two steps than one is that the agent can use the first step to “chunk”

information: combine knowledge represented by multiple features into a single, less

memory-intensive feature. Chunking allows the agent to store more information in work-

ing memory—and thereby deduce more. The term “chunk” is drawn from related re-

search in cognitive psychology (see Miller (1956) and Chase and Simon (1973)).

Third, the agent employs both bottom-up and top-down thinking to make deductions.

Bottom-up thinking combines small features into larger ones, while top-down thinking

uses big-picture features (narratives) to deduce smaller details. The agent uses top-down

thinking, rather than bottom-up alone, because narratives offer a memory-efficient way

of thinking about the picture.

In the version of the model with extrapolation, the agent adds features to knowledge

when they “fit the data” sufficiently well—in the sense that there are relatively few al-

ternative explanations. Extrapolation expands the set of conclusions that can be reached

with limited working memory or limited initial information; but it also introduces the

possibility of mistakes.

Extrapolation makes sense of the phenomenon of perceptual rivalry. To see why, con-

sider the rabbit-duck illusion (Figure 1(b)). Depending upon which part of the picture the

agent processes first, the agent can get into one of two steady states. In one, the agent

extrapolates to a “rabbit” interpretation of the full picture and a “rabbit ears” interpreta-

tion of the left-hand side. “Rabbit ears” and “rabbit” mutually reinforce each other. For

instance, the presence of “rabbit ears” in working memory blocks the adoption of alterna-

tive explanations to “rabbit”—such as “duck.” In the other steady state, the agent adopts

a “duck” interpretation of the full picture and a “duck bill” interpretation of the left-hand

side. These features, likewise, are mutually reinforcing.

We refer to the interpretation of the parts of the picture (e.g. “rabbit ears” or “duck

bill”) as mental scaffolding. Mental scaffolding lends stability to the agent’s overall inter-
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pretation of the picture—or narrative. When the scaffolding is weak, rather than fixing

on a single perception, the agent may cycle between perceptions such as “rabbit” and

“duck.”

In most of the paper, we focus on settings where agents draw conclusions without

acting upon them. However, we consider a straightforward extension where the agent

faces a choice. To choose, the agent must draw a conclusion about which option yields

the most utility. We show how limited working memory affects the agent’s perception of

their options and thus their decision-making. This extension captures a variety of well

known phenomena such as choice overload, selective attention to attributes (e.g. price or

quality), satisficing, and the role of defaults.

The model offers new insights into the persuasion problem. In standard economic

models of persuasion (e.g. Kamenica and Gentzkow (2011)), persuasion involves control-

ling the information the agent receives. In our framework, the agent’s beliefs also depend

upon how they interpret that information, which opens up new persuasion channels. For

instance, it matters whether good news is presented before bad news or vice-versa, as

this may affect which narrative the decision-maker ultimately adopts. Persuasion may

also involve suggesting a narrative. Here, we have in mind that suggesting narratives

involves influencing what the agent attends to (i.e. the narratives the agent considers

adopting). One application is to the political process, where our model makes sense of

why it is important to maintain “control of the narrative” and “get ahead” of damaging

stories.

The most persuasive narratives, moreover, tend to be simple (i.e. features with short

codewords). Simple narratives conserve working memory; consequently, they are easy

to employ. In fact, simple narratives that are false may be adopted over complex narra-

tives that are true. Politicians especially understand the importance of simplicity. Take,

for instance, Ronald Reagan’s well known line: “Government is not the solution to our

problem, government is the problem.” As the political consultant Frank Luntz puts it:
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“the most memorable political language is rarely longer than a sentence.”4

We conclude the paper with a discussion of potential applications and extensions.

We show how the framework can be adapted to examine how an agent might come to

perceive the relationship between multiple observations, a process that captures predic-

tive model-building by an agent. Another promising extension is to a setting where two

agents communicate. Back-and-forth communication can be fruitful because the agents

encode features differently—which leads them to see different things in the same data

and share insights with each other.5

It is useful to note that, in given applications of the model, it is often clear what types

of codes agents will employ.6 Moreover, once we impose structure on agents’ codes,

the model delivers sharp predictions about behavior. For instance, in our application to

political persuasion, putting structure on voters’ codes delivers clear predictions about

when politicians will preemptively release damaging information.

There is, of course, a vast literature in economics on bounded rationality, starting with

the work of Simon (1955) who pointed to “limits on computational capacity” as an impor-

tant constraint on “actual human choice.” The highly influential line of work on heuris-

tics and biases, initiated by Kahneman and Tversky, suggests that people rely on men-

tal shortcuts to make decisions due to cognitive limitations, though these shortcuts can

sometimes lead to systematic errors. This literature, moreover, was strongly influenced

by work in cognitive psychology on perception. For instance, they argued that people’s

perceptions can be skewed by arbitrary reference points—leading to phenomena such as

anchoring effects or endowment effects (see Kahneman and Tversky (1974) and Thaler

(1980)).

A comparatively recent strand of work by Bordalo, Gennaioli, Shleifer, and coauthors

(hereafter BGS et al.) seeks to “get inside people’s heads” and explore the consequences

4Luntz (2007), p. 7.
5Depending upon the agent’s coding system, storing a given feature in working memory can take up more
or less space. As a result, the coding system affects what the agent is able to see.

6The types of codewords that are likely to be short are those that are either decision-relevant themselves or
help agents reach decision-relevant conclusions.
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for decision-making (Bordalo et al. (2023, 2012, 2013a,b, 2016b, 2020, 2024); Mullainathan

et al. (2008)). One of their central ideas is that people categorize situations, grouping sim-

ilar cases together and applying the same model of reasoning within categories. In do-

ing so, they may transfer information from a situation where it is useful to one where it

is not—which can explain the presence of framing effects. They also argue that agents

tend to notice features that are prominent, contrasting, or surprising when comparing

situations within the same category (for instance, an item that is particularly expensive

compared to similar items the decision-maker recalls). A second key idea is that decision-

makers only attend to some of the many features of a decision problem. Thus, the aspects

of the problem that are salient play a critical role in determining what people choose.

Another approach to bounded rationality has been to assume that a decision-maker

optimizes subject to some constraint. Constraints that have been considered include

imperfect memory (Mullainathan (2002) and Wilson (2014)), limited information (Sims

(2003)), limited attention to decision-relevant variables (Gabaix (2014)), limited precision

in communication (Cremer et al. (2007)), limited ability to reason about other agents’

strategies (Stahl and Wilson (1994), Crawford and Iriberri (2007)), cognitive uncertainty

(Enke and Graeber (2023)), or bounded communication (Ellison and Holden (2014)).

Relative to the existing literature on bounded rationality, our contribution is to offer

a theory of a central aspect of the human reasoning process: how one goes from seeing

the parts to seeing the whole. Our theory highlights, in particular, the role that limited

working memory plays in the reasoning process. Limited working memory not only

constrains what the agent is ultimately able to see; it also leads to reasoning in steps,

where—even when the agent receives no new information—insights unfold successively,

as each new insight opens the door to others.7

Limited attention plays a central role in our framework, as in the work of BGS et

al. Their work holds fixed what agents know and examines how attention to different

7Our model distinguishes between two types of memory: permanent storage (i.e. “hard drive”), which
we assume to be infinite, and working memory (i.e. “RAM”). By contrast, there is only a single type of
memory in the models of Mullainathan (2002) and Wilson (2014).
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pieces of information affects decision-making. Our focus, by contrast, is on how lim-

ited working memory shapes the reasoning/learning process—and the consequences for

what decision-makers ultimately know, or think they know.

Our paper also relates to a literature on narratives and mental models (e.g. Bénabou

et al. (2018); Eliaz and Spiegler (2020); Gibbons et al. (2021); Schwartzstein and Sunderam

(2021)).8 Perhaps most closely related is Wojtowicz (2024), who considers a different

mechanism that can lead to path dependence: the speed at which new data arrives.9

Relative to the existing literature, we adopt a distinct definition: we think of narratives as

understandings of the big picture.

Finally, our paper relates to the cognitive psychology literature on inductive reason-

ing, which examines how people infer theories from a limited set of examples. One

prominent strand—the minimum description length (MDL) framework—argues, as we

do, that people favor explanations that are encoded simply (see Chater (1996), Feldman

(2000), and Chater and Vitányi (2003)). While MDL treats simplicity as a model-selection

criterion, simplicity emerges endogenously in our model from a working-memory con-

straint.10 Another contrast is that MDL focuses on Kolmogorov complexity/simplicity—

defined as the length of the shortest computer program that encodes an explanation—

whereas we allow for heterogeneity in what individuals consider simple, which captures

the diversity in what people are able to see in the same data. A second influential perspec-

tive casts induction as Bayesian inference guided by fixed, hard-wired priors—often tak-

ing the form of hierarchical Bayesian networks (see Tenenbaum et al. (2006) and Oaksford

and Chater (2007)). By contrast, in our framework, the agent needs to learn what model

8Schwartzstein and Sunderam (2021) conceive of an agent as choosing a mental model from an available
set that is potentially influenced by a persuader. Eliaz and Spiegler (2020) conceive of narratives as causal
interpretations of events (specifically, directed acyclic graphs). Gibbons et al. (2021) conceive of narratives
in terms of categorizations and examine how a group’s shared narrative affects their capacity to cooperate.
Bénabou et al. (2018) model the process by which narratives disseminate.

9In Wojtowicz (2024), an agent repeatedly evaluates their existing model against “nearby” alternatives, and
switches whenever the alternative has better fit. If data arrives too quickly, path dependence may arise
and the agent may not converge to the maximum-likelihood model.

10That is, simple explanations are favored not because agents actively seek them out, but because agents
struggle to develop complex explanations.
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they are in without priors to guide them. Finally, whereas most work in psychology (like

economics) emphasizes the outputs of inductive processes—the conclusions people ulti-

mately draw—we examine how people build up partial insights step by step.

The paper proceeds as follows. Section 2 presents a version of the model in which the

agent is purely deductive. Section 3 considers the possibility that the agent extrapolates

as well. Section 4 shows how the model can be applied to the phenomenon of perceptual

rivalry. Section 5 discusses the extension to a choice setting. Section 6 considers implica-

tions for the persuasion problem. Section 7 discusses other potential extensions. Section

8 concludes. All proofs are contained in the appendix.

2 Deduction

2.1 Model

An agent is presented with a picture P of size M × N. A picture is a matrix whose ele-

ments pxy take the values “black” or “white.”


p11 p12 p13 · · · p1N

p21 p22 p23 · · · p2N
...

...
... . . . ...

pM1 pM2 pM3 · · · pMN



We refer to the elements pxy as pixels.

The agent’s task—described formally below—is to determine features of the picture.

For example, the agent might be shown the picture in Figure 2 and their task might be to

determine whether this picture depicts a smiley-face.

Let R denote an m × n region of the overall M × N grid; and let PR denote the sub-

matrix of P on region R (see Figure 3). Let q be a proper, non-empty subset of the set of
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Figure 2: Example of a Picture

all pictures of size m × n; we refer to q as an m × n-pattern. We say that pattern q applies

to PR if PR ∈ q. For example, Figure 4(a) shows a set of pictures which we might refer to

as the “smile” pattern. This pattern applies to region R of the smiley-face picture (Figure

4(b)). Similarly, there might be an M × N-pattern “smiley-face”; and we might say that P

depicts a smiley face if this pattern applies to P.11

Figure 3

We refer to a pattern-region pair f = (q, R) as a feature, and we say that feature f

applies to picture P if pattern q applies to PR. Note that two features (q, R) and (q′, R′)

might be equivalent in the sense that they imply the same restrictions on the picture:

{P : PR ∈ q} = {P : PR′ ∈ q′}.

11Here, we define a “smile” in binary terms: a picture, or region of a picture, either depicts a smile or not
(depending upon whether it belongs to some set). In Section 7.3, we introduce an alternative, non-binary
way of categorizing where a picture (or region) may be more or less smile-like.
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(a) The smile pattern

R

(b) The smile pattern in region R

Figure 4

We may sometimes refer interchangeably to equivalent features. For instance, we might

say that a feature of the picture is “pattern q on region R,” even though this statement,

strictly speaking, corresponds to an equivalence class of features.

The agent has a knowledge set consisting of features of P. The agent may add to this

knowledge set over multiple periods, t ∈ {0, 1, 2, . . . }. We denote the agent’s time-t

knowledge set by Kt. If f ∈ Kt, we say that “at time t, the agent thinks feature f ap-

plies to P.”

The agent’s initial knowledge set consists of knowledge of each pixel’s color. That is,

the agent knows the pattern that applies to every 1× 1 region of the picture (whether it is

“black” or “white”) but nothing else: K0 = Kpixels, where

Kpixels = {(q, R) : q applies to PR, q is a 1 × 1-pattern, and R is a 1 × 1-region}.

While the agent knows the color of every pixel—and thus possesses complete information

about P—they lack any deeper understanding of what P depicts—for example, whether

it depicts a smiley-face. In order to have a deeper understanding, the agent would need

to know features of larger regions of the picture.

The agent adds to their knowledge set by loading existing knowledge into working

memory and drawing conclusions. Formally, let Wt ⊆ Kt denote the knowledge the agent

loads into working memory at time t. There is a set of features ∆t that can be deduced
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purely from the knowledge in working memory. At time t + 1, the agent adds these

deductions to their knowledge set: Kt+1 = Kt ∪ ∆t.12

To give an example, suppose the agent loads the following features of the picture into

working memory: “the number of white pixels in region R is even” and “the number of

white pixels in region R is prime.” Then, the agent concludes that “there are two white

pixels in region R” and this is added to knowledge.13

Importantly, the agent has limited working memory, which restricts the amount of

knowledge they can load into working memory and bounds their ability to make deduc-

tions. What the agent can load into working memory depends upon how they encode

information.

The agent has a code C : Q → B that uniquely maps the set Q of patterns (of any size)

to the set B of finite-length binary strings. For example, the agent might use “1101” to

represent the “smile” pattern. We refer to “1101” as the agent’s codeword for “smile.” We

assume that the agent’s code is exogenously given.14

The amount of working-memory space a feature f = (q, R) takes up depends upon

how efficiently its pattern q is encoded. A pattern q takes up more space in working

memory when it has a long codeword (e.g. “1001011”) as opposed to a short codeword

(e.g. “0”). Specifically, we assume that the agent’s working memory constraint is:

∑
(q,R)∈Wt

length(C(q)) ≤ L,

12Formally, we define ∆t as follows. For a set of features F, let PF ≡ {P : P has all features f ∈ F}. Then,
∆t ≡ { f : PWt ⊆ P{ f }} − Kt.

13To be precise, if the agent loads any feature in the equivalence class “the number of white pixels in region
R is even”—and likewise any feature in the equivalence class “the number of white pixels in region R is
prime”—they conclude (and add to knowledge) all features in the equivalence class “there are two white
pixels in region R.” Note that there are other (equivalence classes of) features that the agent deduces as
well—such as “the number of white pixels is a power of two.”

14Notice that the agent’s encoding scheme assigns different codewords to patterns of different sizes, even
when those patterns describe similar objects (for example, squares of different sizes). The agent might,
alternatively, use a single default codeword for the “square” pattern and modify it with prefix codewords
that represent transformations such as scaling or rotation. This might economize on the number and
length of codewords. We rule out such encoding schemes purely for expositional ease.
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where C(q) denotes pattern q’s codeword, length(C(q)) denotes the length of codeword

C(q), and L ≥ 1 denotes the agent’s working memory capacity. Note that, in assuming

that the amount of space feature (q, R) takes up in memory depends only upon its pattern,

we implicitly assume that regional information is encoded so efficiently that it takes up

negligible space. Our results do not depend materially upon this assumption.

Given that patterns with short codewords take up relatively little space in working

memory, we refer to these as “simple” patterns—in contrast to patterns with long code-

words, which we refer to as “complex.” We will also refer to features as simple when

their associated patterns are simple. Observe that whether patterns/features are simple

or complex depends upon how the agent encodes them. Thus, what is simple for one

agent may be complex for another.

There are just two patterns for pixels (i.e. 1 × 1 regions): “white” and “black.” We

assume, for expositional ease, that the agent assigns one of these patterns codeword “0”

and the other codeword “1” (i.e. the two binary strings of length one).15 This assumption

allows us to think of L as the number of pixels the agent can load into working memory.

2.2 The Agent’s Problem

For now, our focus will be on what the agent is able to deduce rather than on how the agent

employs their deductions. However, we have in mind that, in the background, the agent

faces a decision problem for which their deductions are relevant. We explicitly consider

such a decision problem in Section 5.

In the remainder of this section, we examine what deductions the agent is capable of

making given their code C. In other words, our approach will be to ask: is there a thought

process (i.e. a sequence of working memories W0, W1, ...) that would allow the agent to

reach the conclusion that some feature f applies to picture P?16

15This assumption maximally favors the use of pixels in deduction by minimizing their working memory
footprint.

16We do not take a stance on how much (calendar) time it takes the agent to complete a deduction step. We
might think of the amount of time involved as the agent’s “computational ability.” For an agent with high
computational ability, it is probably sufficient to examine—as we do—whether there is some deductive
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We are agnostic for now about how exactly deductions translate to choice, but we

have in mind that an agent makes better decisions when their deductions improve. This

holds, for instance, in Section 5, where our agent makes a choice only after they reach a

conclusion about the optimality of that choice.

2.3 What can be deduced?

Let us consider what the agent is capable of deducing—as well as how long deductions

take. We start with the following definition.

Definition 1.

1. A feature f that applies to P is deducible in τ steps ( f ∈ Dτ) if there exists a sequence

W0, ..., Wτ−1 of working memories such that f ∈ Kτ.

2. A feature f that applies to P is deducible ( f ∈ D) if it is deducible in τ steps for some finite

τ.

Let us also define what it means for the agent to know “everything about P” (i.e. have

a complete understanding of the picture’s features).

Definition 2. We say that the agent knows “everything about P” if, for any feature f that applies

to P, the agent knows an equivalent feature.

We obtain the following proposition.

Proposition 1.

1. If L ≥ M × N: everything about P is deducible in a single step.

2. If L = 1: the agent cannot deduce anything about P (i.e. every feature in D is equivalent to

some feature in K0).

process (W1, W2, ...) by which the agent can reach a conclusion. For an agent with low computational abil-
ity, however, we might also wish to examine the number of steps involved. We make the modeling choice
in this paper to focus primarily on the role of limited working memory rather than limited computational
ability. However, it is easy to extend our analysis to consider limited computational ability as well.
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3. If 1 < L < M × N, for some picture P and encoding C:

• The agent can deduce something about P, but less than everything.

• There are features that apply to P that are only deducible in multiple steps.

Part 1 of the proposition says that if the agent has sufficient working memory (L ≥

M × N), everything is deducible in a single step. Intuitively, if L ≥ M × N, the agent can

load their knowledge of every pixel’s color into working memory. If the agent has every

pixel loaded in memory, they can deduce every feature of the picture. Therefore, only

when L < M × N does working memory bound the agent’s ability to make deductions.

Part 2 of the proposition says that if the agent has just one unit of working memory

(L = 1), the agent cannot deduce anything. The reason is that the agent learns the big

picture by combining or integrating their knowledge of features. If L = 1, they can only

load a single feature into working memory.

To understand Part 3, consider Figure 5 and suppose the agent has working memory

capacity of six. While the “checkerboard pattern” applies to picture P, the agent cannot

work this out in a single step since they cannot load all nine of P’s pixels into working

memory. However, they can work it out in multiple steps if they have a suitable code.

Consider, for instance, a code where patterns 1 and 2 (depicted in Figure 5) each have

codewords of length two. The agent can load the three pixels on the left side of P in work-

ing memory and deduce that pattern 1 applies to the left column (panel b). In subsequent

steps, the agent learns that patterns 2 and 1 apply to the middle column and right col-

umn respectively (panels c and d). Using all six units of working memory, the agent can

then load their knowledge of each column’s pattern and deduce that P is a checkerboard

(panel e).17

17In fact, if “pattern 3”—consisting of the six pixels in the middle and right columns—also has a codeword
of length two, then a memory capacity of four (L = 4) is sufficient to work out that P is a checkerboard.
Using three units of memory, the agent can learn the pattern of each column. Using four units of memory,
the agent can then load their knowledge of the middle- and right-column’s patterns and learn that pattern
3 applies. Finally, using four units of memory, they can learn that P is a checkerboard by storing their
knowledge that pattern 1 applies to the left column and pattern 3 applies to the rest of the picture.
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Figure 5: A Multi-step Deduction

We can also use the checkerboard example to show that the agent may be able to

deduce something but not everything. For example, suppose that the agent has a code

where all patterns—except the patterns for pixels—have codewords of length L + 1 or

greater. Then, the only patterns the agent can load into working memory are those for

pixels. It is thus impossible for the agent to learn that P depicts a checkerboard. However,

the agent can still learn something. For example, by storing the three pixels on the left in

working memory, they can learn that pattern 1 applies to the left column.
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2.4 Chunking

If we examine the multi-step deduction depicted in Figure 5, the key thing the agent

does between steps is condense information. Specifically, the agent combines multiple

features, with a high memory demand, into fewer features with a lower memory de-

mand. For instance, the three pixels in the left column of P are initially represented as

three features—one feature for each pixel—which requires three units of working mem-

ory. These features are then combined into a single “pattern 1” feature, which requires

only two units of working memory.18

We refer to this process of combining features as “chunking” in light of a closely re-

lated literature in cognitive psychology. The term “chunk” was introduced by Miller

(1956), who made a remarkable discovery about short-term memory. Miller found that

the ease or difficulty of remembering information depends upon how it is stored. For

example, a telephone number can be stored as a string of individual digits (e.g. 5, 1, 2,

3, 4, 8, 2) or as a set of larger numbers, or chunks (e.g. 512, 3482). Chunking the phone

number, he discovered, significantly reduces the strain on memory.

William Chase and Herbert Simon further developed the concept of chunking in a

famous 1973 paper.19 They conducted an experiment in which expert and novice chess

players were shown board positions for five seconds and then asked to reconstruct the

positions from memory. When participants were presented positions from actual chess

games, the experts significantly outperformed the novices. On average, experts correctly

recalled the locations of 16 chess pieces, while novices only correctly recalled the locations

18Chunking relates to the literature on data compression—in particular work on minimum description
length (MDL) (see Rissanen (1978) and, for an overview, Grünwald (2007)). The MDL literature points out
that “total description length” is equal to the sum of “description length of the model M” and “descrip-
tion length of the data D given the model M.” Consequently, there is a tradeoff between using a complex
model, where data description is simple, and a simple model, where data description is complex. This
tradeoff is present in our framework. For instance, the left column in Figure 5 could be represented as
“pattern 1” or as three pixels. The first representation economizes on data description (it only involves a
single feature, compared with three features in the second representation) whereas the second representa-
tion economizes on model description (it is composed of pixels, which are simpler features than “pattern
1”).

19Chase and Simon (1973) build on earlier experimental results of De Groot (1965).

17



of 4 pieces. However, when participants were shown random board positions, there was

no difference between experts and novices; furthermore, both groups performed even

worse than the novices did on actual board positions.

Chase and Simon posited that expert players have a greater ability to chunk typical

chess configurations. In terms of the model, we can think of experts and novices as hav-

ing different encodings of patterns. Experts assign short codewords to common board

positions, whereas novices do not. This allows experts to represent a board position in

terms of just a few simple features, in contrast to novices.

To make this point more concrete, consider Figure 6. Panel (a) shows a constellation

of pixels that we might think of as akin to the position of pieces in a board game. Panel

(b) shows that one way of representing this configuration is as an “H” and an “I.” Sup-

pose one agent (akin to the expert chess player) has short codewords for the “H” and “I”

patterns—as they might if they are familiar with the Roman alphabet. Say both code-

words have length two. If this agent stores the board in working memory as an “H” and

“I”, it takes up just four units of memory—far less memory than the fifty units needed to

store fifty individual pixels. Suppose a second agent (akin to the novice) has long code-

words for “H” and “I.” This agent may not find it any better to store the board as an “H”

and an “I” than as fifty pixels.

(a) Game Board

H I
(b) Game Board - Chunked

Figure 6: Chunking a Game Board

2.5 Bottom-up and Top-down Thinking

Cognitive psychologists make a distinction between bottom-up and top-down thinking

(see Marr (2010); Neisser (2014)). Our model captures this distinction. We refer to the
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agent’s thinking as bottom-up if they make deductions about larger regions from fea-

tures of smaller regions. For instance, deducing that a set of pixels form an “H” (see

Figure 6) is bottom-up. In fact, chunking more generally is bottom-up. Notice that when

the agent engages in bottom-up thinking, they are constructing narratives (i.e. big-picture

statements).20

Top-down thinking, by contrast, involves making deductions about smaller regions

from features of larger regions. For instance, if the agent uses their knowledge that P

depicts a smiley-face to deduce that region R depicts a smile (see Figure 4), this would

be top-down. When the agent engages in top-down thinking, they are using narratives,

rather than constructing them.

The following is a formal definition of these two types of thinking.

Definition 3. Suppose the agent deduces feature f = (q, R) at time t.

• This deduction involves “bottom-up thinking” if, for all features g = (q′, R′) ∈ Wt, R′ is

strictly contained in region R.

• This deduction involves “top-down thinking” if there is a feature g = (q′, R′) ∈ Wt with

region R strictly contained in R′, and the agent does not learn f if g is omitted from Wt.

Unchunking information—for instance, taking an “H” and deducing the constituent

pixels—fits our definition of top-down thinking. Our definition of top-down thinking

also allows the agent to make deductions using a combination of big-picture and smaller-

picture features. For example, the agent might use their knowledge that picture P is a

smiley-face (i.e. belongs to a set of smiley-face pictures) in combination with their knowl-

edge of a few pixels to deduce that region R is a “smile.” Note that not all types of
20An issue with defining a feature f = (q, R) as a narrative based on whether region R is large is that there

might be an equivalent feature f ′ = (q′, R′) where R′ is small. There are various alternative definitions
of narratives that deal with this issue. For instance, take all of the features in f ’s equivalence class and
intersect their associated regions. Let R∗( f ) denote this intersection—which is, in fact, the region of
some feature in f ’s equivalence class. We might refer to f as a narrative if the region R∗( f ) is large.
Another alternative would be to refer to f as a narrative if it “involves” a large number of pixels, where
a pixel is involved if f is informative about its color (more precisely, there is some information about the
remaining pixels’ colors that, in combination with f , would be sufficient to determine the pixel’s color).
For simplicity, in the remainder of the paper, we will refer to f = (q, R) as a narrative if region R is large;
but our insights carry over to these alternative definitions.
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thinking can be classified as bottom-up or top-down. The agent would be using a hybrid

form of thinking, for instance, if they were to deduce a feature f of region R from two

other features of region R, g and h.

The following proposition shows that there are features that can only be deduced us-

ing bottom-up thinking and there are features that can only be deduced using top-down

thinking.

Proposition 2. There exists picture P, code C, parameter L, and deducible features f and f ′ such

that:

(a) In any working memory sequence where f is deduced, the deduction of f involves bottom-up

thinking.

(b) In any working memory sequence where f ′ is deduced, the deduction of f ′ involves top-down

thinking.

Given that the agent starts with information that is pixellated, their basic task is to

move from a small-picture understanding to a bigger-picture understanding. Thus, it is

not surprising that some deductions require bottom-up thinking.

It is less obvious that there are deductions requiring top-down thinking. Starting from

pixels, top-down thinking seems like a circuitous route to deducing a feature f . However,

the bottom-up path might be blocked if there are no simple intermediate features the

agent can use to chunk up to f . Even if the direct path is blocked, there might be simple

intermediate features that allow the agent to chunk up to a simple, big-picture feature

f ′ that is informative about f . In such a case, the agent might take a detour by first

deducing f ′, then engaging in top-down thinking to deduce f from f ′ (see Figure 7 for

further illustration). To summarize, a key reason why the agent uses top-down thinking

is that narratives provide a simple way of thinking about the picture that is not memory-

intensive.

Cognitive psychologists have conducted a variety of experiments that suggest the use

of top-down thinking (see Gilbert and Li (2013)). For example, Gregory (1970) discusses
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Figure 7: This picture illustrates why top-down thinking may be necessary. First, it shows
that a bottom-up path to deducing feature f may be blocked because the intermediate
features (g) are complex. Second, it shows that there may be simple big-picture features
( f ′ and f ′′) that can nonetheless be used to deduce f .

the hollow mask illusion, where people perceive a hollow (concave) face mask as convex,

like a normal face. Gregory argues that this illusion demonstrates the use of a pre-existing

narrative—that the picture depicts a convex face—to interpret the visual information.

2.6 Optimal Codes

We opt to think of the agent’s code C as something they are endowed with, rather than

a choice. Nonetheless, there is reason to think that it evolves. Chase and Simon (1973)’s

experiment provides suggestive evidence. Their results could be purely the result of se-

lection (i.e. better chess players are endowed with better codes); but it seems more likely

that better chess players have better codes because they have more experience with chess.

This raises a variety of questions—such as how codes evolve. However, an even more

basic question is what we mean by a “better” code or an “optimal” code. Here, we give

one possible definition of optimality and discuss its properties.

In order to talk about optimality, we first need to define an objective. With this in

mind, we define a task τ = (F,P) for the agent based on a particular set of features (F)
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and a particular set of pictures (P). We say that the task is achievable if, for each picture

P ∈ P , the agent is able to deduce all features f ∈ F that apply to P.

For a given task and code, let Lmin(τ, C) denote the minimum amount of working

memory capacity needed for the task to be achievable. We say that a code is τ-optimal if

it minimizes the amount of working memory needed for the agent’s task τ.

Definition 4. Let C∗(τ) = arg minC{Lmin(τ, C)} denote the code (or set of codes) that minimize

the working memory needed for task τ. We will refer to C∗(τ) as the optimal code(s) for task τ.

It is relatively easy to show that the optimal code depends upon the task, which we

state as Proposition 3.

Proposition 3. The optimal code is task-specific. That is, for some tasks τ and τ′, C∗(τ) ∩

C∗(τ′) = ∅.

To gain intuition for this result, recall two of the tasks we have considered. In Figure 5,

the agent’s task is to identify whether a picture is a checkerboard. In Figure 6, the agent’s

task is to identify board positions composed of letters. In each case, working memory is

conserved by assigning short codewords to particular patterns. In the first case, it makes

sense to assign short codewords to patterns 1 and 2. In the second case, it is ideal to assign

short codewords to the “H” and “I” patterns.

The number of short codewords is limited. Consequently, a code that is geared to-

wards the first task (detecting checkerboards) is less geared towards the second task (de-

tecting letters).

This result suggests that agents may have different competencies. One agent might

have a code that leads them to excel at chess, while another might have a code that leads

them to excel at Go. We will discuss later how the model might be profitably extended to

environments where agents have different competencies.
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3 Extrapolation

So far, we have assumed that the agent uses deduction alone to learn about the picture.

While, in some cases, deduction may be sufficient to learn about the picture; in others, the

agent may find it useful to employ an additional tool: extrapolation.

Figure 8 shows two cases where extrapolation could be useful. In panel (a), the agent’s

task is to detect whether the picture contains a horizontal line. The agent can load twenty-

two pixels into working memory, but not the twenty-four pixels needed to deduce that

the picture contains a line. To keep the example simple, suppose loading pixels is the

only way the agent can detect the line. It might make sense in this case for the agent to

extrapolate (i.e. decide that there is a line even though they cannot be sure).

(a) Limited working memory.
(b) Limited observation.

Figure 8: Benefits of Extrapolation

In panel (b), the agent is not able to see all of the pixels of the picture. Formally, we

can think of this as a case where the agent’s initial knowledge set K0 contains only some

of the pixels of P. Even if the agent has unlimited working memory, they cannot deduce

that the picture depicts a smiley face; nonetheless, this would be a reasonable conclusion

to draw. Thus, here too, extrapolation may have value.

We now consider a version of the model where the agent makes extrapolations, adding

features to the knowledge set whenever they “fit” sufficiently well with the facts in work-

ing memory.
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3.1 Model

As in the deduction model, we assume that the agent’s initial knowledge set consists of

pixels of P. However, we now generalize by assuming that the agent may initially know

only a subset of P’s pixels: K0 ⊆ Kpixels. This captures the case described in Figure 8(b).

We again assume that the agent loads a subset of their knowledge into working mem-

ory at time t (Wt ⊆ Kt). However, we now assume that, at time t, the agent weighs

whether to add a particular feature f /∈ Kt to the knowledge set, and this feature takes up

space in working memory. Thus, the agent’s working memory constraint is:

∑
(q,R)∈Wt∪{ f }

length(C(q)) ≤ L.

The agent adds feature f to the knowledge set if its fit with the “facts” in working

memory (Wt) weakly exceeds a threshold α (with 0 < α ≤ 1). A higher threshold α

corresponds to an agent who is more deductive. We denote feature f ’s fit with the facts

by Φ( f , Wt) ∈ [0, 1].21

We assume a particular functional form for the fit function, with the intuitive property

that fit is high when most pictures with features Wt also have feature f .22 To formalize

the definition of fit, let Z(S, R) denote the number of plausible pictures for region R given

a set of features S. An m × n-size picture B is plausible for region R given S if there is an

M × N-size picture P′ with features S that corresponds to B on region R (P′
R = B). We

define the fit of feature f = (q, R) with Wt as follows:

Φ( f , Wt) =
log(Z(∅, R))− log(Z(Wt, R))

log(Z(∅, R))− log(Z(Wt ∪ { f }, R))
, (*)

where ∅ denotes an empty set of features. Notice that, in equation (*), the fit is the same

regardless of the choice of logarithmic base. In the special case where no picture is consis-

21Formally, Kt+1 = Kt ∪ { f } if Φ( f , Wt) ≥ α.
22The appeal of this fit function is its simplicity, but there may be other fit functions worth considering.
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tent with the “facts” (Z(Wt, R) = 0), the fit function is undefined.23 In such circumstances,

we assume that f is not added to the knowledge set.24

The fit function has several appealing attributes. For instance, Φ( f , Wt) = 1 if and

only if every picture with features Wt has feature f , in which case f is deducible from

Wt.25 Likewise, Φ( f , Wt) = 0 if and only if no picture with features Wt has feature f . Fit

is also equal to zero if there are no facts in working memory (Wt = ∅). Thus, the agent

never makes extrapolations when they have no facts.

To get a better sense of how the fit function works, let us return to the horizontal-line

example. Suppose the agent loads the highlighted pixels from Figure 9(a) into working

memory and evaluates the horizontal-line feature ( f ) shown in Figure 9(b). Let R denote

the region that covers the entire picture. Observe that Z(∅, R) = 224 (there are 224 possible

pictures when the agent has no information about the pixels’ colors), Z(Wt, R) = 22 (there

are 22 pictures consistent with Wt since two pixels are not pinned down), and Z(Wt ∪

{ f }, R) = 1 (there is just a single picture consistent with f and Wt). Thus, the fit of the

horizontal-line feature with the pixels in working memory is: Φ( f , Wt) =
log 224−log 22

log 224−log 20 =

24−2
24−0 = 11

12 .

(a) Working memory (Wt). (b) Feature f .

Figure 9: Example - Fit Function

23If the agent is purely deductive, some picture must be consistent with the facts. However, when the agent
extrapolates, some of their “facts” may be wrong; as a result, it is conceivable that no picture fits the facts.

24One may interpret log(Z(S, R)) as a measure of the entropy on region R given S—specifically, it corre-
sponds to Boltzmann entropy. Under this interpretation, f is a good fit with Wt when adding it to Wt
has only a slight effect on entropy. Boltzmann entropy and Shannon entropy are closely related. They
only differ by a scalar when all states of a system are equally probable. Thus, log(Z(S, R)) could also
be interpreted as region R’s Shannon entropy if we introduce a probability distribution over matrices on
region R where each plausible submatrix (given S) is equally likely to arise.

25Consequently, an agent with a fit threshold of one (α = 1) is purely deductive.
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3.2 Results

3.2.1 Misconceptions

A benefit of extrapolation is that it enables the agent to learn more of picture P’s features.

In this sense, extrapolation reduces type I error. However, a cost of extrapolation is that

the agent commits more type II errors, learning features that do not actually apply. We

refer to these type II errors as “misconceptions.”

To formalize this point, we define an analog of deducibility: we say that a feature f

is extrapolable if there is a sequence of working memories (W0, f0), ..., (Wτ−1, fτ−1) such

that f ∈ Kτ. We denote the set of extrapolable features by E.

Let us focus for now on the case where the agent knows all of the pixels initially (K0 =

Kpixels). In this case, E can be divided into a set EI of extrapolable features that apply to P

and a set EI I of extrapolable features that do not apply. The following proposition shows

that, the more the agent extrapolates (i.e. the lower the threshold α), the larger are sets EI

and EI I . In this sense, extrapolation decreases type I error but increases type II error.26,27

Proposition 4a. Suppose the agent initially knows every pixel of P (K0 = Kpixel).

1. The sets EI and EI I are both weakly decreasing in α.

2. When α = 1, EI I = ∅.

Patchwork Quilts

The features in the agent’s knowledge set might be internally consistent or internally

inconsistent. We refer to an inconsistent knowledge set as a “patchwork quilt.” To illus-

trate, suppose the agent’s knowledge set contains the following features: “the number of

black pixels in P is prime,” “the number of black pixels in P is even,” and “there are more

26The tradeoff between type I and type II error, first discussed by Neyman and Pearson, has been examined
by many economists—for instance Sah and Stiglitz (1986), who argue that hierarchies tend to generate
more type I error while polyarchies tend to generate more type II error.

27One may think of extrapolation as a form of lossy compression: by extrapolating, the agent economizes
on the amount of working memory needed to reach a conclusion, but introduces the possibility of errors.
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than two black pixels in P.” This is a patchwork quilt since no picture possesses all of

these features.

If the agent’s knowledge set is a patchwork quilt, the agent definitely has misconcep-

tions. Of course, even if the agent’s beliefs are internally consistent, they may still have

misconceptions. In this sense, a patchwork quilt is a special type of misconception.

It is easy to show that patchwork quilts can arise. This contrasts with the standard

Bayesian model in which an agent’s beliefs must be internally consistent. We will return

to the topic of patchwork quilts when we consider a version of the model in which the

agent can revisit and revise their past extrapolations.

3.2.2 Prediction

Having discussed the case where the agent observes all of the pixels (K0 = Kpixel), let us

now discuss the case where they only observe a subset (K0 ⊂ Kpixel). In this situation,

there is an additional benefit of extrapolation: it allows the agent to predict unobserved

pixels. For example, in Figure 8(b), extrapolation allows the agent to predict the pixels

covered by the hand.

When K0 ⊂ Kpixel, we can partition set E into three subsets: features that apply to

picture P (EI), features that do not apply (EI I), and features that may or may not apply

(EI I I).28 For instance, in Figure 8(b), there are features that may or may not apply de-

pending upon what is covered by the hand. We can think of EI I I as the agent’s predictions

as their truth value is not ascertainable. The following generalization of Proposition 4a

shows that extrapolation increases the size of EI I I ; in this sense, it allows the agent to

make predictions.

Proposition 4b.

1. The sets EI , EI I , and EI I I are weakly decreasing in α.

28Let PK0 = {P′ : P′ has all features f ′ ∈ K0}. Feature f applies to picture P if it applies to all of the pictures
in PK0 ; it does not apply to P if it does not apply to any picture in PK0 ; and it may or may not apply if it
applies to some, but not all, of the pictures in PK0 but not all.
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2. When α = 1, EI I = EI I I = ∅.

3.2.3 Simplicity

In the extrapolation model, the agent is more likely to adopt features (or explanations)

that are coded as simple.29 This follows from the assumption that considering a feature

for adoption consumes working memory.

To illustrate, let us revisit the horizontal-line example. Figure 10 shows two features,

f and f ′, that the agent might consider adding to their knowledge set. Recall that feature

f has fit of 11
12 , and it is straightforward to show that feature f ′ has the same fit. Given

that they have the same fit, one might be tempted to think that they are equally likely to

be adopted. However, if f is a simple feature (i.e. “horizontal line” has a short codeword)

while f ′ is a complex feature, the agent might have enough memory capacity to adopt f

but not f ′. In this way, the simple explanation ( f ) may be extrapolable while the complex

one ( f ′) is not.

(a) Working memory (Wt). (b) Feature f . (c) Feature f ′.

Figure 10: Example - Simplicity

The following proposition formalizes this point. It shows that features are more likely

to be adopted when they are simpler.

Proposition 5. Suppose f = (q, R) is a feature with pattern q. Consider two codes C and C′ that

differ in only one respect: pattern q has a shorter codeword in C than C′. Let E and E′ denote the

set of extrapolable features under each code. If f is in E′, then f is also in E. Moreover, there exist

instances of codes C and C′ and parameter values such that f /∈ E′ and f ∈ E.

29Relatedly, Gestalt psychology’s principle of prägnanz holds that perception gravitates towards simple,
parsimonious perceptions, even in complex environments (e.g. Wertheimer (1938)).

28



One implication of this proposition is that the agent has a tendency to adopt and em-

ploy narratives that are relatively simple. Indeed, a simple, incorrect narrative might be

adopted over a complex, correct one.

4 Perceptual Rivalry

Consider the rabbit-duck illusion (Figure 1(b)). A key property of this illusion is that

people have trouble seeing a rabbit once they have seen a duck—and vice-versa. It is

possible to switch from one perception to the other, but it is hard. Moreover, it is virtually

impossible to see rabbit and duck at the same time. This is an example of a more general

phenomenon. Once someone has one way of perceiving a picture, it is hard to perceive

the picture in other ways (see Leopold and Logothetis (1999)).

In line with a cognitive psychology literature on salience (see Serences and Yantis

(2006)), we capture this idea by assuming that “powerful” narratives are salient; their

salience can make it hard for competing narratives to emerge. For instance, once the agent

has perceived “rabbit,” the salience of “rabbit” may block “duck.” This naturally leads to

the possibility of multiple stable perceptions, where what the agent ultimately perceives

(e.g. rabbit or duck) depends upon the agent’s initial working memory sequence.30

4.1 Power

We assume that a feature’s salience depends upon its “power”—a concept we will now

define. To illustrate the concept of “power,” consider Figure 11. Figure 11(a) shows a

“smiley-face” feature, which consists of three full-picture matrices that all depict smiley-

faces. If the agent has “smiley-face” in working memory, it helps them evaluate region R

of picture P (see Figure 11(b)): in fact, in combination with knowledge of just one extra

pixel, it becomes clear that the “smile” pattern of Figure 4(a) applies. For this reason, we

think of “smiley-face” as a powerful feature for region R.

30In this case, there may be several knowledge sets the agent can reach—rather than a single extrapolable
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(a) The “smiley-face” feature.

R

(b) The power of “smiley-face.”

Figure 11: Example of Power

More generally, we say that a feature f is powerful for region R if it narrows down the

possible subpictures on R. Formally, we define power as follows.

Definition 5. The “power” of a set of features F for region R is:

ΓR(F) = 1 − log Z(F, R)
log Z(∅, R)

.

Notice that power takes the value zero when a set of features F does not narrow down

the possibility set at all. By contrast, power takes the value one when F perfectly pins

down what happens on region R (since, in this case, Z(F, R) = 1).31

Power and Working Memory

We make the assumption that features are more salient—that is, more likely to enter

into working memory—when they are more powerful. Take the smiley-face feature in

Figure 11, for instance. If “smiley face” is powerful, then once the agent recognizes that

the picture depicts a smiley face, it becomes a highly salient feature.

We further assume that salience alone does not guarantee that a feature enters into

set E.
31One may think of the power of a set of features F as the reduction in entropy on region R relative to

complete ignorance.
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working memory—since there is also a question of whether including a feature strains

the agent’s memory capacity. However, we assume that features enter working memory

provided they are sufficiently salient and sufficiently simple. Assumption 1, stated below,

formalizes this idea.

Assumption 1. Suppose, at time t, the agent is evaluating a feature f = (q, R). Consider

f ′ ∈ Kt \ f and F′′ ⊂ Kt \ f , where { f ′} is weakly more powerful than F′′ on region R, f ′ is

weakly simpler than the sum of f ′′ ∈ F′′, and at least one of these two inequalities is strict. If the

agent loads every element of F′′ into working memory (Wt), then they must also load f ′.

Notice that, under Assumption 1, the agent will substitute a set of features with an

equivalent but simpler “chunked” feature (e.g., “H” in place of the pixels representing

“H”).32 More generally, prioritizing simple, powerful features—as the agent does under

Assumption 1—helps them economize on working memory.

4.2 Multiple Stable Perceptions

Here, we show that under Assumption 1, multiple stable perceptions may exist. For

example, depending on their initial thoughts, the agent might perceive a rabbit (and no

duck) in the long run, or a duck (and no rabbit). Proposition 6 formalizes.

Proposition 6. Under Assumption 1, for some (α, L, P, C, K0), there exist features f and f ′ and

initial working memory sequences (i) ((W0, f0), ..., (Wt, ft)) and (ii) ((W ′
0, f ′0), ..., (W ′

t , f ′t )) such

that:

• Under initial sequence (i), f ∈ Kτ and f ′ /∈ Kτ for all τ > t for any subsequent working

memory sequence,

• Under initial sequence (ii), f ′ ∈ Kτ and f /∈ Kτ for all τ > t for any subsequent working

memory sequence.

32Note that the agent could have the unchunked features in working memory—but only if they have the
simpler, chunked feature as well.
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To gain intuition for this result, let us continue with the rabbit-duck example. Sup-

pose that “rabbit” and “duck” are both simple features and that there is a point in time

where the agent is able to extrapolate to either “rabbit” or “duck.” If the agent extrap-

olates to “rabbit,” this may prevent the agent from later extrapolating to “duck” (and

vice-versa). To see why, notice that once “rabbit” is in the knowledge set, it is likely to

be powerful—and thus salient—in evaluating other features. Thus, if the agent considers

adopting “duck,” “rabbit” will be in working memory—and “duck” will be rejected since

it has low fit with “rabbit” (see Figure 12(a)). We see then that, in the long-run, the agent

may end up adopting “rabbit” or “duck”—but not both.

Notice that “rabbit” also tends to block the adoption of duck-related features—such

as “duck bill” for the left-hand side—as they have low fit with “rabbit” (see Figure 12(b)).

By contrast, features related to “rabbit”—such as “rabbit ears” for the left-hand side—are

likely to be adopted (see Figure 12(c)). Thus, when the overall picture is perceived as a

1X(b)

X(a)

(c)

Rabbit/Rabbit Ears Duck/Duck Bill

Figure 12: Multiple Stable Perceptions
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“rabbit,” the agent also sees the regions as rabbit-like.

4.3 Deletion and Cycling

Many people, with prolonged viewing, switch back and forth between seeing a rabbit

and a duck. This phenomenon, which we refer to as cycling, suggests that people may

actively discard previously-held perceptions. To capture such behavior, we now allow

the agent not only to add features with high fit, but also delete features with low fit.

We augment the model of Section 3 as follows. As before, in each period, the agent

evaluates a feature f ’s fit with the contents of working memory Wt. Now, however, the

agent considers f either for addition to or deletion from the knowledge set. Specifically,

the agent may evaluate a feature f /∈ Kt, in which case they add f to the knowledge set if

fit exceeds a threshold α (Φ( f , Wt) ≥ α); or the agent may evaluate a feature f ∈ Kt, but

with f /∈ Wt, in which case they delete f from the knowledge set if fit is below a threshold

β (Φ( f , Wt) ≤ β). We assume that the thresholds α and β satisfy 0 ≤ β < α ≤ 1. As

discussed in Section 3, if no picture is consistent with the “facts” (Z(Wt, R) = 0), the fit

function is undefined; in this case, we assume that f is neither added nor deleted. We

also assume that the agent’s initial knowledge K0 is “axiomatic” and cannot be deleted.

The following proposition shows that cycling is now a possibility.

Proposition 7. Under Assumption 1, cycling is possible. That is, for some (α, β, L, P, C, K0),

there exist features f and f ′ and a working memory sequence ((W0, f0), (W1, f1), ...) such that:

• f ∈ Kt1 and f ′ /∈ Kt1 ,

• f ′ ∈ Kt2 and f /∈ Kt2 ,

• f ∈ Kt3 and f ′ /∈ Kt3 ,

for some t1, t2, t3 with t1 < t2 < t3.

To gain intuition for Proposition 7, let us return to the rabbit-duck example and, for

the purposes of this discussion, let us stipulate that the left-hand side of the picture is
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more duck-like while the right-hand side is more rabbit-like. Imagine the agent initially

thinks the picture depicts a rabbit (i.e. “rabbit” is in the knowledge set), as shown in

Figure 13(a). The agent might reconsider this view, deleting “rabbit” from knowledge, if

they evaluate “rabbit” against features of the more duck-like, left-hand side.

Recall that when “rabbit” is in the knowledge set, it tends to block the adoption of

“duck” (see Figure 12). But having eliminated “rabbit” from knowledge, the agent is in a

position to add “duck”—perhaps by evaluating “duck” against features of the duck-like,

left-hand side (Figure 13(b)).

With “duck” in knowledge in place of “rabbit,” the stage is set for the process to work

in reverse. The agent might remove “duck” from knowledge if they evaluate it against

features of the more rabbit-like, right-hand side (Figure 13(c)); and with “duck” removed,

the agent is in a position to add “rabbit” back again (Figure 13(d)).

Proposition 7 holds even in the absence of Assumption 1. In fact, this assumption

makes the result more challenging to establish, as it restricts the set of feasible working

memory sequences.

(a) (b) (c)

(d) (e)

Rabbit Duck Working Memory

Figure 13: Example of Cycling
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4.4 Mental Scaffolding

In Figure 13, the features “rabbit” and “duck” are both vulnerable to deletion. A natural

question is whether there are mechanisms that might protect such features against dele-

tion. Here, we show that the presence of a complementary feature in knowledge can be

protective. For instance, “rabbit” and “rabbit ears” might protect each other, preventing

the deletion of either from knowledge and blocking the adoption of an alternative inter-

pretation of the picture (“duck” and “duck bill”). The following proposition captures this

type of interplay.

Proposition 8. Under Assumption 1, for some (α, β, L, P, C, K0), there exist features f and f ′

that protect each other from deletion. Specifically, given any working memory sequence

((W0, f0), . . . , (Wt−1, ft−1)):

• If f , f ′ ∈ Kt, then for any subsequent working memory sequence, f , f ′ ∈ Kτ for all τ > t.

• If f /∈ Kt or f ′ /∈ Kt, then there exists a subsequent working memory sequence such that

f , f ′ /∈ Kτ for some τ > t.

The reason two features—such as “rabbit” and “rabbit ears”—may protect one an-

other is as follows. Suppose “rabbit” and “rabbit ears” are both powerful, simple fea-

tures. Then, per Assumption 1, whenever the agent considers removing “rabbit ears”

from knowledge, “rabbit” comes to mind—which protects “rabbit ears.” Effectively, the

agent says: “these must be rabbit ears since this is a rabbit.” By the same token, when-

ever the agent considers removing “rabbit”, “rabbit ears” comes to mind—which protects

“rabbit.”

We can think of “rabbit” (a feature of the full picture) as a high-level narrative that

is supported by complementary sub-narratives—such as “rabbit ears” (a feature of the

left-hand side)—that fit well with “rabbit”. We think of such sub-narratives as “mental

scaffolding” that help stabilize and protect high-level narratives.
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A stable perception—as opposed to an outcome where there is cycling—is less likely

when the scaffolding is weaker. For instance, when “rabbit ears” is less complementary

to “rabbit” (i.e. has less good fit)—or is a more complex feature—it does less to stabilize

“rabbit.” Overall, sets of simple, complementary features form stable scaffolds.33

4.5 Patchwork Quilts Revisited

Notice that deleting features can help the agent iron out inconsistencies in their inter-

pretation of the picture. For instance, if the agent has a mostly “rabbit” interpretation

of the picture’s parts, they might delete an inconsistent duck-like feature with poor fit.

Nonetheless, this ironing process does not eliminate patchwork quilts entirely. The fol-

lowing proposition formalizes this point.

Proposition 9. Under Assumption 1, patchwork quilts can arise and be stable. That is, for some

(α, β, L, P, C, K0), there exists an initial working memory sequence ((W0, f0), . . . , (Wt, ft)) such

that:

1. There is a stable set of features F in the knowledge set after time t: F ⊆ Kτ for all τ > t for

any working memory sequence ((Wt+1, ft+1), . . . ).

2. No picture is consistent with these features: {P : f applies to P for all f ∈ F} = ∅.

The idea behind the proposition is as follows. To eliminate an inconsistency from

knowledge, the agent must detect an inconsistency; and detecting an inconsistency may

be difficult with limited working memory. To illustrate, consider again the patchwork

quilt example where the agent thinks the picture: has more than two black pixels, an

even number of black pixels, and a prime number of black pixels. If the agent evaluates

33A related point, that we do not explore further in this paper, is that stability is enhanced when the scaffold
has good “coverage” (i.e. there are sub-narratives covering most regions of the picture). For instance,
“rabbit ears” (a sub-narrative for the left-hand side) and “rabbit head” (a sub-narrative for the right-
hand side) provide good coverage for “rabbit.” In the absence of effective coverage, an antagonistic
sub-narrative might be able to gain a toehold in an uncovered region—which can ultimately lead to the
deletion of the main narrative. For instance, “duck head” might take root in the absence of “rabbit head,”
leading to the displacement of “rabbit.”
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one of these features—for instance “more than two black pixels”—against the other two,

that feature will be deemed to have zero fit and it will be deleted. However, evaluating

one feature against the other two requires storing all three in memory at once—which

may not be possible with limited memory capacity.

This example demonstrates that detecting inconsistencies may require complex trian-

gulation that surpasses the agent’s cognitive capabilities. The Penrose Triangle (Figure

14)—a type of illusion known as an “impossible object”—provides a visual illustration

of this concept. The three-dimensional object that the graphic depicts is geometrically

impossible, yet people struggle to detect the impossibility because doing so requires si-

multaneously evaluating all facets of the object.

Figure 14: Penrose Triangle

5 A Choice Problem

So far, our focus has been on settings where the agent only faces a perception problem.

They draw conclusions; but they do not do anything with those conclusions. Here, we

extend the model to a choice-problem setting where the agent uses their conclusions to

make choices.

Specifically, we consider a setting where the agent has all of the information needed

to make an optimal choice. In other words, they have all of the pixels. However, to make

a choice, the agent needs to make sense of that information. That is, they need to work out

the big picture.
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5.1 Setup

An agent has a utility function u(a, o) over apples and oranges, where a and o denote

quantities of apples and oranges respectively. The agent faces a choice between option

1, consisting of a1 apples and o1 oranges, and option 2, consisting of a2 apples and o2

oranges.

Initially, the agent knows the details of each option (a1, o1, a2, and o2); however, know-

ing these details is not the same as knowing which option they prefer. We have in mind

that the agent only makes a choice when they put this information together and reach a

conclusion about their preference. That is, they choose option i when they conclude that

u(ai, oi) ≥ u(aj, oj).

We apply our perception framework to model the agent’s reasoning process about

their preferences. The agent’s choice problem can be represented as a picture P:

P =
apples

oranges


option 1

a1

option 2

a2

o1 o2


We permit ai and oi to take integer values between 0 and z, rather than just two values,

to make the choice problem richer.

The agent reasons about the picture using the extrapolative procedure described in

Section 3.1, where new features are evaluated against existing features in working mem-

ory and added if fit exceeds threshold α.34 The agent’s initial knowledge set K0 consists

of the pixels of P (a1, o1, a2, and o2). They choose option i if they add a feature fi to the

knowledge set corresponding to the event where u(ai, oi) ≥ u(aj, oj).

Remark. Notice that if we allow for deletion of features, the agent might add fi to knowl-

edge, leading them to choose option i, and then later delete fi from knowledge, possibly

replacing it with f j. This corresponds to a case where the agent doubts or regrets a deci-

34The only difference from Section 3.1 is that pixels take more than two values; thus the number of possible
pictures is (z + 1)4 instead of 24.
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sion they have already made.

5.2 Analysis

Let us analyze the agent’s decision problem under two simplifying assumptions. First,

suppose the utility function has an additive form: u(a, o) = a + o. Second, suppose the

agent’s code only assigns short codewords to pixels, f1, and f2; all other features are too

long to fit into working memory. This rules out the possibility of using chunking to reach

decisions.

Case 1: high working memory capacity.

First, consider the case where the agent’s working memory capacity (L) is sufficient to

load all of the pixels into working memory (Wt) when considering f1 or f2 for addition to

the knowledge set. If the agent loads all of the pixels and considers fi, they add fi (and

hence choose option i) if and only if u(ai, oi) ≥ u(aj, oj). Intuitively, because the agent has

a large memory capacity, they are able to work out which option maximizes utility. Thus,

provided the agent fully exploits their memory capacity, the classical assumption holds

that the agent makes the utility-maximizing choice.

Case 2: low working memory capacity.

How does the agent reason when they cannot load all of the pixels into working mem-

ory? Consider two possible approaches the agent might take when they can only load two

pixels (details of the analysis are in Appendix A.2).

Focusing on one attribute. The agent might fixate on a particular attribute of the choice

problem—such as apples—just as agents in the work of BGS et al. selectively attend to

attributes such as price or quality.

Suppose the agent attends to apples (i.e. puts a1 and a2 into working memory) when

considering fi. It is easy to show that the agent adds fi to knowledge—that is, chooses op-

tion i—if and only if ai − aj exceeds a threshold θ. Intuitively, if option i yields sufficiently
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more apples than option j, the agent is willing to extrapolate to the conclusion “option i

yields more utility than option j.”35

Focusing on one option. Alternatively, the agent might fixate on one option i (i.e. by putting

ai and oi into working memory). In that case, the agent satisfices in the sense of Simon:

they choose option i if it exceeds a “good enough” threshold. That is, if the agent con-

siders fi, they add it to knowledge if u(ai, oi) exceeds a threshold η. Intuitively, if option

i yields sufficient utility, the agent is willing to extrapolate to the conclusion “option i

yields more utility than option j.”36

5.3 Struggling to Choose

In order to make a decision, the agent needs a narrative about which choice is best. Absent

such a narrative, they struggle to choose.37 Constructing such a narrative is difficult when

working memory is limited. For instance, suppose the agent fixates on apples. If |a1 −

a2| < θ, the agent will not be able to extrapolate to either f1 or f2, leaving them unable

to pick an option. Intuitively, given that the agent can only attend to limited information,

they are unable to muster sufficient confidence in either choice.

35Here, the agent chooses an option based on a particular attribute (e.g. apples). In a slightly richer ver-
sion of the model, we can also capture situations where an agent rejects an option based on a particular
attribute, and uses a sequential rejection process to ultimately make a choice. Tversky (1972) argues that
this elimination process is a common practice in complex choice settings.

36The agent might also attend to the attributes of option j when considering fi. In this case, the agent
adds fi to knowledge (i.e. chooses option i) if and only if the utility option j yields is below a threshold:
u(aj, oj) ≤ η′.

37The challenge of decision-making in the absence of a guiding narrative is well-supported across disci-
plines. The work of David Tuckett and coauthors on conviction narratives emphasizes the role of sto-
rytelling in shaping confidence, suggesting that people construct narratives to navigate uncertainty and
make complex choices with conviction (see Johnson et al. (2023)). Without such narratives, they argue,
decision-making becomes fraught with doubt and hesitation. Shafir et al. (1993)’s notion of “reason-based
choice” similarly highlights how a lack of coherent rationale complicates choice, as individuals struggle
when they cannot find a unifying reason or story. Donald Davidson’s theory of action is foundational
here, proposing that intentional action depends on having reasons that make sense within a larger in-
terpretive framework (see Davidson (1963)). Cognitive load theory (Sweller (1988)) further suggests that
without an overarching narrative to integrate disparate information, cognitive burden increases, height-
ening the risk of analysis paralysis (Baumeister et al. (1998)). Additionally, Ricoeur (1992) and McAdams
(1993) underscore the role of narrative in constructing a cohesive self, while Chang (2017)’s work on “hard
choices” illustrates the difficulty of making decisions in the absence of clear evaluative criteria.
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Besides working memory capacity, several other factors affect whether it is difficult

to choose. A second factor is choice complexity, consistent with the empirical literature

on choice overload. Increasing the number of options (e.g., three instead of two) or the

number of attributes (e.g., apples, oranges, and bananas) raises the total number of pixels,

making it harder for the agent to feel confident about any particular choice (see Appendix

A.2 for details).38 This finding echoes Iyengar and Lepper (2000)’s classic “jam study,”

which shows that consumers purchase more jam when presented with fewer options (six)

than when offered a larger assortment (twenty-four).

Another factor is how similar attributes are across options. For example, consider an

agent who focuses on a particular attribute (e.g., comparing ai to aj). As |ai − aj| shrinks,

the options converge in attractiveness, making it harder for the agent to choose. This

result aligns with a body of work showing that, when options are close in attractiveness,

people engage in costly deferral, even though doing so is irrational (e.g. Tversky and

Shafir (1992) and Dhar (1997)).39,40

What happens when agents struggle to choose? One possibility is that agents may go

with a default—in effect, not making a choice. This might explain why defaults are so

influential in complex contexts, such as retirement-plan selection (see Madrian and Shea

(2001) and Thaler and Benartzi (2004)).

A second possibility is that agents might gradually lower the fit threshold α (i.e., they

become more willing to extrapolate) until they reach a point where making a choice is

feasible.41 This is in line with a large experimental literature suggesting that difficult

38For instance, adding a third option raises the satisficing threshold η, making it less likely that the agent
will consider any option “good enough.” Intuitively, the more options there are, the less willing the agent
becomes to deem the current option “the best.”

39In Tversky and Shafir (1992)’s experiment, a rational agent might be more inclined to defer when the
overall attractiveness of options declines, but not when options become closer in relative attractiveness.
Nonetheless, they find that relative attractiveness matters.

40Another factor that affects whether it is hard to choose is the agent’s code. For instance, suppose the
agent has short codewords for the features “ai ≥ aj” and “oi ≥ oj.” The ability to chunk such information
enables the agent to deduce that ui ≥ uj even when |ai − aj| and |oi − oj| are both small—but only if
there is a dominant option (i.e. ai ≥ aj and oi ≥ oj). Note that, as an agent gains more experience with
a certain type of choice problem, their coding scheme may become better adapted, rendering it easier to
make decisions.

41The agent is able to make a choice if the fit threshold is sufficiently low. If the fit threshold is zero, all
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choices take longer to make (e.g. Payne et al. (1993)).

6 Persuasion

Political actors frequently try to frame the narratives around their campaigns and around

controversies (e.g. Entman (1993); Lakoff (2014)). An early television-era example is

Richard Nixon’s “Checkers” speech, delivered two months after his selection as Eisen-

hower’s running mate in response to allegations of an improper $18,000 campaign fund.

Opening by conceding that his honesty and integrity had been questioned and insisting

that the best response to a smear “is to tell the truth,” Nixon then detailed how every

penny went to political expenses—not personal gain—and walked viewers through his

modest household budget, from a rented apartment in Alexandria to his wife Pat’s plain

winter coat. The defining moment came when he revealed a gift from a supporter—a

cocker spaniel named Checkers—and declared it the one gift he intended to keep. That

simple, heartfelt anecdote shifted the focus, humanized Nixon, and swiftly defused calls

to drop him from the ticket.

Standard economic models of persuasion, where a principal influences an agent solely

by choosing what information to disclose (e.g. Kamenica and Gentzkow (2011)), overlook

a crucial aspect of Nixon’s rhetorical strategy: he did not change what voters learned so

much as change how they understood it. In our model, an agent’s beliefs depend both

upon the information they receive and on how they interpret it, opening up new channels

of influence.

The Role of Timing

One new channel of persuasion is manipulating the time at which information is re-

leased. Consistent with a psychological literature on primacy effects (e.g. Asch (1946)),

whether an agent sees good information earlier or later affects the narrative they ulti-

mately adopt.

choices are acceptable; thus, the agent effectively chooses at random.
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To illustrate, consider the following example (further details of which are given in Ap-

pendix A.3). There is a representative voter choosing between candidate A and candidate

B. Candidate B’s type is known, so the voter’s choice will depend on their assessment of

candidate A, whose type consists of a vector of n pixels:

[
p1 p2 p3 · · · pn

]
,

with pi ∈ {good, bad} and n > 4. We will refer to candidate A as a “good egg” if there

are at most two bad pixels and a “bad egg” if there are at most two good pixels.

In the voter’s code, the only features with codewords short enough to fit in working

memory are pixels, “good egg,” and “bad egg”; any combination of these features can be

loaded into working memory. The voter extrapolates with addition and deletion thresh-

olds α and β. They vote for candidate A if they think candidate A is a “good egg,” and

they vote for candidate B if they think candidate A is a “bad egg.”

Suppose that only four pixels are revealed to the voter: two of which are good and

two of which are bad. Candidate A cannot block these pixels from being revealed but

can control the sequence of revelation. Candidate A decides which pixels are revealed

(i.e. added to knowledge) in round 1 and which are revealed in round 2. In each round,

voters make extrapolations over many steps until they settle on a stable knowledge state

(if one exists).

For some range of extrapolation thresholds, we find the following (see Appendix A.3

for further details).

Case 1: the good pixels are revealed in round 1 and the bad pixels are revealed in round 2. The

voter can extrapolate to “good egg” off of the two good pixels but not to “bad egg.” After

the voter has extrapolated to “good egg,” the revelation of the two bad pixels in the next

round is not sufficient to delete the “good egg” narrative. Thus, candidate A wins when

the good pixels are revealed first.
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Case 2: the bad pixels are revealed in round 1 and the good pixels are revealed in round 2. The

voter can extrapolate to “bad egg” off of the two bad pixels but not to “good egg.” After

the voter has extrapolated to “bad egg,” the revelation of the two good pixels in the next

round is not sufficient to delete the “bad egg” narrative. Thus, candidate B wins when

the bad pixels are revealed first.

Consequently, candidate A prefers that their positive traits be revealed first. In con-

trast, candidate B would rather have the voter initially see candidate A’s negative traits.

Similar to the rabbit–duck illusion, two narratives—“good egg” and “bad egg”—are pos-

sible; the information that is disclosed early determines which narrative voters adopt.

Suggesting Narratives

Another way in which a persuader might influence an agent is by suggesting a nar-

rative. We have in mind that suggesting a narrative involves affecting what the agent

attends to (i.e. loads into working memory). Specifically, suppose the persuader suggests

a narrative f to the agent at time t and points out a set of facts F that the agent already

accepts (i.e. F ⊆ Kt). This suggestion prompts the agent to consider adopting f at time t,

while storing facts F in working memory (i.e. Wt = F).

Politicians like to be the first to suggest a narrative—because the initial narrative has

an outsize impact on what voters believe. Indeed, they will sometimes release damag-

ing information themselves, not to harm their own standing but to deny opponents the

chance to frame the story before them (see Arpan and Roskos-Ewoldsen (2005)).

To illustrate, consider the following elaboration of the previous example (with further

details again in Appendix A.3). Suppose there is a negative story about candidate A (e.g.

concerning improper use of campaign funds or an illicit affair). Candidate A is aware of

the story and the opposing candidate (B) is aware of the story with probability p. The

story consists of a vector of n > 4 pixels where, once again, each pixel is either good

or bad. The good pixels correspond to mitigating factors (e.g., if the story involves an

illicit affair, mitigating factors might include its brevity and the politician’s reconciliation

44



with their spouse). The story is “forgivable” if there are at most two bad pixels and

“unforgivable” if there are at most two good pixels. If the story comes out, the voter

only sees four of the n pixels: two good pixels and two bad.

The probability that candidate A wins the election is:

Prob(A wins) =


1, if the story does not come out

q, if it comes out and the voter deems it “forgivable”

0, if it comes out and the voter deems it “unforgivable.”

The candidates alternate turns, with candidate A moving first. On each turn, the active

candidate may release the story if they are aware of it. Once the story has been released,

the active candidate can also suggest a narrative about it—“forgivable” or “unforgivable”—

and direct attention to specific aspects of the story (for example, the good pixels or the

bad pixels). Candidates may also take the voter through two working-memory steps re-

garding the story, first having them consider rejecting the existing narrative, and then

having them consider adopting a new one (for instance, rejecting “forgivable” and adopt-

ing “unforgivable”). After this initial suggestion, the voter makes further extrapolations

over many steps, and the candidate’s turn then ends.

It is easy to show that, for the same extrapolation thresholds as in the previous case,

the first candidate to release the story determines the narrative the voter ultimately adopts.

Candidate A can release the story first, suggest the “forgivable” narrative to the voter

while directing their attention to the good pixels (the mitigating factors); the voter then

adopts this narrative and candidate B cannot subsequently get the voter to switch to the

“unforgivable” narrative. Likewise, if candidate B releases the story first, they can suggest

the “unforgivable” narrative to the voter while directing their attention to the bad pixels

(the negative aspects of the story); the voter then adopts this narrative and candidate A

cannot subsequently get the voter to switch to the “forgivable” narrative.42

42Here, we allow the candidate to suggest a narrative ( f ) and focus the voter’s attention on certain facts
(Wt). More generally, the voter could be persuaded through one of these channels alone: that is, simply
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Thus, candidate A faces a choice whether to “get ahead of the story.” If they release

the story first, they can get the voter to adopt their preferred narrative (“forgivable”) and

they win with probability q. Alternatively, they can remain silent, in which case candidate

B releases the story if they are aware of it (i.e. with probability p) and steers the voter to

their preferred narrative (“unforgivable”). It follows that candidate A releases the story

if p + q > 1.

Simple Narratives

A further implication of the model is that persuaders tend to be more effective when

they suggest simple, powerful narratives since, as discussed earlier (Section 3.2.3), these

narratives are easier to keep in mind.

All politicians know the importance of simple, powerful messages. Ronald Reagan’s

famous line “Government is not the solution to our problem, government is the problem”

and Franklin Roosevelt’s pronouncement “The only thing to fear is fear itself” resonate

even today.

One corollary is that simple, powerful narratives can be quite persuasive even when

they are false. Sometimes the truth is complex (i.e. agents may lack short codewords); in

such cases, false narratives that are simple and powerful may be hard to counteract. As

Jonathan Swift wrote: “Falsehood flies, and the Truth comes limping after it.”43

7 Discussion

Here, we discuss a variety of applications and possible extensions of the model.

7.1 Multiple Observations and Model-Building

One interpretation of our framework could be that P is not a single observation but rather

a collection of (potentially related) observations. An agent who is presented with such a

by suggesting a narrative, or simply by focusing attention on certain facts.
43A modern version of this adage is Brandolini’s (2013) law: “the amount of energy needed to refute bullshit

is an order of magnitude bigger than to produce it.”
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collection might be particularly interested in the relationships between observations; that

is, they may seek to perceive common features that are shared across all observations in

the collection. For instance, the agent might perceive that each observation in the collec-

tion depicts a face. The agent’s knowledge of common features is, in effect, the agent’s

model of that collection.

Consider a concrete example. In the picture shown below, each column describes an

experiment undertaken by the agent, where the agent took a set of actions (a1i, ..., ani) and

observed a set of outcomes (o1i, ..., omi):

P =



a11 . . . a1k
... . . . ...

an1 . . . ank

o11 . . . o1k
... . . . ...

om1 . . . omk


.

Some of the features of P describe patterns that are common to each column. For instance,

one feature the agent might perceive would be that a1i = o1i for all i. This feature is

effectively a model of the world in which a particular action (a1i) determines a particular

outcome (o1i). Another feature the agent might perceive would be that o1i = o2i for all i.

This is effectively a model of the correlation between certain types of outcomes.

Notice that the agent might initially observe all of the pixels of P, in which case a

feature like a1i = o1i is a purely descriptive model. However, some actions/outcomes might

be unobserved, in which case a1i = o1i might serve as a predictive model.

7.2 Back-and-Forth Communication

An important idea in organizational economics is that boundedly rational individuals

can achieve superior outcomes when working together (see Simon (1947)). A version of
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our model with multiple agents speaks to this idea; moreover, it makes sense of why it is

important for agents to have back-and-forth communication.

Consider, for instance, a team-theoretic setting where two agents have different codes.

They are presented with the same picture P and have the same initial knowledge, con-

sisting of all of the pixels of P. Both agents are purely deductive. Suppose both agents

are able to deduce something but not everything about the picture on their own; and be-

cause of their different codes, the agents deduce different things. Let F0
1 and F0

2 denote

the features that are deducible for agents 1 and 2 respectively.

Clearly, the agents benefit from sharing their deductions: agent 1 can add F0
2 to their

knowledge set and vice-versa. However, the benefits do not stop there. Notice that agent

i, having added features from F0
j to their knowledge set, may be able to make further

deductions. Let F1
i denote the additional deducible features for agent i. The agents can

communicate these additional deductions; and perhaps even more deductions will result

(F2
i , F3

i , ...).

We see then that communicating back-and-forth can generate continual revelations.

This captures a feature of communication that is intuitive, yet absent from existing mod-

els. In models where agents simply have different initial information, they share what

they know and there is no further reason to communicate.

Notice that when the agents’ codes are exactly the same, communication does not

yield fresh insights (F0
1 ∪ F0

2 = Fn
1 ∪ Fn

2 for n > 0)—since each agent already sees what the

other sees. Likewise, if the agents’ codes are extremely different, communication does not

yield fresh insights. Intuitively, if the agents communicate, agent 1 shares features that

are simple for them but complex for agent 2. Thus, agent 2 cannot put agent 1’s insights to

use to learn more about the picture. However, if the agents codes are different—but not

too different—communication does yield fresh insights. Thus, communication is most

fruitful in this intermediate case.
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7.3 Categorization

The psychological literature on categorization, starting with the work of Eleanor Rosch

and colleagues, highlights a fascinating phenomenon (see, for example, Rosch (1973)).

People normally perceive categories in binary terms: an item either belongs or not. At the

same time, some items are considered more exemplary than others. For instance, a robin

is generally perceived as a more exemplary “bird” than an ostrich.

In fact, the most exemplary items—rather than being the most common or average—

are often exaggerated forms. Young boys often dress up as soldiers and young girls as

princesses precisely because these exaggerated images are particularly exemplary of the

categories “male” and “female.”

Our model speaks to these findings. Features are binary in the model: a feature f

either applies to a picture P or not. From a binary feature f , however, we can classify

pictures in non-binary terms as more or less exemplary of feature f . Specifically, let us say

that an agent considers a particular picture P more exemplary of feature f if it is easier for

the agent to extrapolate to f (easier in the sense of lower working memory requirement

L or stricter fit threshold α). For instance, an agent might find it easier to extrapolate to

“bird” from a picture of a robin than a picture of an ostrich.

Notice that this allows for an alternative—and somewhat more appealing—definition

of smiley faces. Previously, we defined “smiley-face” in binary terms: pictures were

smiley-faces or they were not (see Figure 11). We might instead use a particular feature

f ∗ (e.g. consisting of one or several smiley-face pictures) to classify pictures as more or

less exemplary smiley-faces.44

We might ask what pictures are most exemplary of a category. For instance, which

pictures most scream “bird”? One might guess that the picture that most screams “bird”

is a picture of a bird (i.e. feature f ∗ applies to the picture most exemplary of feature

44Rosch argues that people assess how well an item fits a category based on its similarity to a prototype.
Therefore, in the case of “smiley-face,” feature f ∗ would be a prototypical smiley-face. Medin and Schaffer
(1978), by contrast, suggest that people compare against existing items in the category; these items serve
as exemplars. Thus, in their view, f ∗ consists of all items already classified as smiley-faces.
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f ∗). However, this is not necessarily the case. In fact, the birdiest picture may be highly

exaggerated or abstracted: Picasso’s take on a bird rather than a photograph. Note that

the exact nature of this abstraction will depend critically upon the agent’s code, as the

code determines the nature of the extrapolation process.45

A classic experiment by the biologists Niko Tinbergen and Albert Perdeck illustrates

the importance of exaggeration and abstraction (see Tinbergen and Perdeck (1951)). To

induce a parent to regurgitate food, herring gull chicks peck at a red spot on the parent’s

bill (see Figure 15(a)). Tinbergen and Perdeck ran a series of experiments to test the peck-

ing behavior of these chicks. They found that the chicks peck just as much at a model

of an adult gull’s head, or a model of the beak alone. However, most surprisingly, they

found that a red rod with three white stripes (see Figure 15(b)) induced 25 percent more

pecks from the chicks than any of the other alternatives. In other words, the abstracted

beak—which wasn’t a beak at all—was most exemplary to the chicks.

(a) Herring gull. (b) Red Rod.

Figure 15: Tinbergen and Perdeck’s Experiment

7.4 Latent Structure

There are many systems where people observe some aspects of the system, but they fail to

see all of its workings. For instance, before the invention of the microscope, people could

observe infectious illnesses but they were unable to see the germs causing those diseases.

45Another approach to exaggeration is offered by Bordalo et al. (2016a). They develop a model of stereo-
types based on Kahneman and Tversky’s representativeness heuristic, where agents overweight the fre-
quency of relatively common types.
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In such settings, people not only form views of what they are seeing; they also form

views regarding these latent structures. Take Darwin’s theory of natural selection, for

instance. He compiled a vast array of observations—from the beaks of finches in the

Galapagos to the fossils of giant armadillos in South America—but he could not directly

observe the evolution of species over millions of years. He managed nonetheless to take

these observations and form a view of the latent structure. Indeed, an immense number of

scientific theories—from string theory to the structure of DNA—require inferences about

such structure.

It turns out that it is relatively easy to extend the model to allow agents to perceive

latent structure. We illustrate using an example from the realm of visual perception.

Perceiving a third dimension.

People often look at two-dimensional images and interpret them as three-dimensional

scenes. A classic example is the Necker cube (Figure 16). We can think of the three-

dimensional cube as the inferred latent structure.

Figure 16: The Necker Cube

Let us consider a simple tweak to the model that captures the inference of latent struc-

ture. Suppose the agent thinks that the two-dimensional picture P they are presented

with is the projection of a three-dimensional array P̃ onto a two-dimensional plane (akin

to a photograph). Formally, let P = G(P̃), where G : R3 → R2 is a projection of a three-

dimensional space onto a two-dimensional plane.

Observe that for any feature f of P, there is a corresponding feature f̃ of P̃, where
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f̃ = {P̃′ : f applies to G(P̃′)}. Let K0 denote the agent’s initial knowledge of picture

P, consisting of pixels. Let K̃0 denote the corresponding features of P̃. The tweak we

make to the model is that we assume that the agent deduces/extrapolates on the three-

dimensional space, starting from K̃0—rather than on the two-dimensional space.

A consequence of projecting three dimensions down to two is that, if the agent is

purely deductive, they will not be able to tell what image they are looking at in three-

dimensional space—even if they can deduce everything in two-dimensions. Ambiguity

regarding the latent structure remains. For instance, a purely-deductive agent could not

rule out that the image in Figure 16 is flat.

However, when the agent extrapolates, they may reach a firm view despite this under-

lying ambiguity. The Gestalt psychologists argued that people employ a variety of visual

strategies when looking at images, which help them—among other things—convert two-

dimensional images into three dimensions. These strategies include, for instance, looking

for symmetries, converging lines (indicative of depth), and objects obscuring other ob-

jects (also indicative of depth). Recall that agents in our model are particularly likely

to extrapolate towards interpretations coded as simple. We might think of these strate-

gies identified by the Gestalt psychologists as features that agents tend to code as simple

which, in turn, play a key role in determining how they resolve ambiguity regarding

latent structure.46

7.5 Occam’s Razor

Occam’s razor is a principle that asserts that simple explanations are generally the best

ones. One of the standard justifications for this principle is that the failure to favor simple

explanations can lead to overfitting. Intuitively, a complex model—with many degrees

of freedom—has more wiggle room to find an explanation that fits the data well but is

46The perception of motion can also be accounted for in terms of latent structure, which in this case relates
to whether objects across pictures are considered to be the same or different. For instance, if a dot in
picture 1 is viewed to be the same as a dot in picture 2, this would lead to the perception of a moving dot
between pictures; by contrast, if the dots are viewed to be different, this would lead to the perception of
one dot disappearing and another dot appearing.
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ultimately incorrect.47

Notice that the fit function we chose in Section 3.1 does, in fact, take into account this

overfitting concern. To illustrate, suppose we define a feature f ’s “explanatory power” as

the log share of pictures with feature f among those that fit the facts Wt (i.e. log Z(Wt∪{ f },R)
log Z(Wt,R)

).

Fixing the explanatory power of f , it is less likely to be adopted (i.e. Φ( f , Wt) is lower)

when there are fewer facts (i.e. log Z(∅,R)
log Z(Wt,R)

is smaller). In other words, when there are

only a few facts—which raises the chance feature f ’s explanatory power is purely due to

chance—the bar for adoption is greater.

There is another important way in which Occam’s razor comes into play in our frame-

work, however. Recall that agents are more likely to adopt explanations that they code as

simple, since these explanations are easier for them to think about.

To illustrate, consider again the following picture partially obscured by a hand (Figure

17(a)). The extrapolation the agent makes regarding the unseen pixels will depend in

large measure upon their code. In particular, they will be more likely to extrapolate to

a smiley-face (Figure 17(b)) than some alternative with the same fit (Figure 17(c)) if they

code smiley-faces as simple.

(a) Initial Observation (b) Extrapolation 1 (c) Extrapolation 2

Figure 17: Two Extrapolations with the Same Fit

Agents’ codes—and hence, their views of what is simple—may differ. This, in turn,

may lead to differences in the extrapolations they make. In fact, one could experimentally

47For instance, versions of Occam’s razor can be derived within a Bayesian model selection framework.
Two classic formalizations that come from such an approach are the Akaike Information Criterion (AIC)
and the Bayesian Information Criterion (BIC), which reward models for fitting the data well but also
penalize them for having more degrees of freedom.
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test this hypothesis—for instance, by seeing whether novice and expert chess players,

who appear to have different codes, extrapolate differently.48

8 Conclusion

The Gestalt psychologists’ observation that seeing the parts is different from seeing the

whole has become a foundational idea in cognitive psychology and neuroscience. Inte-

grating information, and developing an understanding of what it means, is seen as one

of the key challenges our brains face. Computer science and information theory are also

based on the idea that processing information is not straightforward. Economics, by con-

trast, typically treats the information processing problem as a black box.

This paper builds a framework that helps bridge economics with these other disci-

plines. We assume that agents have unlimited ability to store information—unlimited

hard-drive space, so to speak. However, they have limited working memory (akin to

RAM). Working memory is the place where agents integrate information and develop

a big-picture understanding of what it means. We show that limited working memory

bounds agents’ ability to draw conclusions.

We also explore, in this context, the use of extrapolation by agents. On the one hand,

extrapolation allows agents to reach further than they can with deduction alone, poten-

tially reaching more correct conclusions. On the other hand, extrapolation introduces the

possibility of wrong conclusions.

This paper leaves a number of unanswered questions. There are aspects of the rea-

soning process that require further exploration. How, for instance, are the contents of the

48If this hypothesis is confirmed, an additional empirical question one might ask is whether it is simply dif-
ferences in cognitive load that affect which explanations agents adopt. For instance, the agent’s cognitive
load is likely to be considerably lower if they are asked to choose between two potential extrapolations
such as Figures 17(b) and (c) rather than generate an extrapolation from scratch. We suspect, even if
agents are given a simple choice, they will tend to extrapolate to Figure 17(b) over (c), suggesting that
they may, ceteris paribus, have a preference for simple explanations. Notice that adding a penalty to
the fit function for complexity would be a simple way of capturing such a preference (analogous to the
penalty for more degrees of freedom imposed in the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC).
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agent’s working memory determined? The work of BGS et al. suggests that there are

bottom-up processes at work (i.e. the salience of information) while the literature on ra-

tional inattention emphasizes the role of top-down processes (i.e. people make decisions

regarding what deserves attention).

Our focus in this paper has primarily been on the role of limited working memory.

However, the paper also brings to light the importance of limited cognitive ability (which

we can think of as the agent’s clock speed at performing deductions/extrapolations).

When cognitive ability is limited, it matters not only what the agent is able to conclude

but also how quickly they are able to reach conclusions.
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Appendix

A.1 Proofs

Proof of Proposition 1. Part 1: suppose that at t = 0, the agent loads every 1× 1 feature into
working memory. (Recall that there are M × N such features, and each has a length-one
codeword.) Then every feature of the picture is immediately deduced, so that K1 consists
of the set of all features of P, as claimed.

Part 2: observe that if L = 1, then Wt in each period is either empty or consists of a single
1 × 1 feature. No new features can be deduced from a single 1 × 1 feature f , except for
features equivalent to f . It follows that any feasible knowledge set Kt consists only of
features that are equivalent to features already in K0. The result follows.

Part 3: consider the following example. P is a 1× 5 picture where every pixel is white (“all
white”). Pattern q consists of a single 1 × 3 “all white” submatrix and has a length-two
codeword, while q′ consists of a single 1 × 4 “all white” submatrix and has a length-three
codeword. No other pattern has a length-two codeword. Working memory capacity is
L = 3.

Observe that any feature of the form (q′, R′) cannot be deduced in one step; but it can
be deduced in two steps by first learning a smaller feature of the form (q, R) where R is a
subregion of R′. Furthermore, the full picture cannot be deduced.

Proof of Proposition 2. Consider the following example. Suppose L = 8. Picture P is a 4× 8
“checkerboard”: each pixel pij is black if i + j is even and white otherwise. The following
patterns will be relevant (see Figure 18):

• q1 consists of the two 1 × 8 “alternating” sub-matrices
“black-white-black-. . . -white” and “white-black-white-. . . -black.”

• q2 is the set of 4× 8 matrices where each 1× 8 row of the matrix matches an element
of q1.

• q3 is the 4 × 1 submatrix “black-white-black-white.”

• q4 is the 4 × 7 submatrix corresponding to the first seven columns of P.

Further, suppose that patterns q1 and q3 are assigned to length-two codewords, that q2
is assigned to a length-six codeword, and that there are no other patterns with codeword
length ≤ 8.

For this proof, we will identify a region by the set of columns it covers; for instance,
R3−6 will refer to the region consisting of all pixel locations in the four middle columns.

The feature (q4, R1−7) applies to P; call it f4. Similarly, we label the feature (q2, R1−8)
as f2. We claim that f4 can only be deduced from a combination of f2 and some feature
based on pattern q3. Observe that given L = 8, no combination of features that excludes
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P

q1

q4

q3

FEATURE 1

FEATURE 1

FEATURE 1

FEATURE 1

q2

Figure 18: Proof of Bottom-Up/Top-Down Deduction

f2 can deduce f4. Further, if f2 is loaded in working memory, there are only two units of
working memory capacity remaining, and no two additional pixels nor any feature based
on q1 can suffice to pin down f4. This establishes the claim.

On the other hand, there is a working memory sequence that eventually deduces f4
from f2 and some feature based on q3. Specifically: in each of the first four periods, the
agent loads all eight pixels from row i into memory and deduces the feature f ′i = (q1, R′

i)
where R′

i is the region consisting of all pixel locations in the i-th row. In the fifth period,
the agent loads each of { f ′1, . . . , f ′4} into memory and deduces f2. In the sixth period, the
agent loads all pixels from the first column into memory and deduces the feature (q3, R1),
which we label as f3. In the seventh and final period, the agent loads f3 and f2 into
memory and deduces f4. It follows that f4 can be, and can only be, deduced top-down.

Now consider the feature (q3, R8), which we label as f5. It can be deduced only from
pixels (i.e. bottom-up).

To establish Proposition 3, we will first state and prove two lemmas.

Lemma 1. Consider a 1 × 6 grid. Let task τ = (F, P), where F consists of all 64 possible 1 × 6
pictures and P is any given picture. (In words: the agent’s task is to identify picture P perfectly.)
Then Lmin(C∗(τ), τ) ≤ 3.

Proof of Lemma 1. Let the pixels of P, from left to right, be [p1 . . . p6]. For i ∈ {1, . . . , 6},
let q1...i be the 1 × i pattern consisting of the matrix [p1 . . . pi]. Consider a code where the
patterns q1...2, q1...3, q1...4, q1...5 are assigned to length-two codewords. For i ∈ {1, . . . , 6},
define f1...i = (q1...i, R1...i) where R1...i is the region consisting of the first i pixel locations,
from left to right, of the matrix. Notice that learning f1...6 is equivalent to identifying P.
And, denote fi = ({[pi]}, Ri) to be the feature where pixel pi applies to the region Ri
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consisting of the i-th pixel location. Then picture P can be identified with the working
memory sequence.

Wt = { f1...(t+1), ft+2} for t ∈ {0, . . . , 4}.

Specifically, in each period t ∈ {0, . . . , 3}, the agent deduces f1...(t+2) from f1...(t+1) and
ft+2, and thus deduces f1...6 at t = 4. W0 takes up two units of working memory, while
W1, . . . , W4 each take up three units of working memory. It follows that Lmin(C∗(τ), τ) ≤
3.

Lemma 2. Consider a 1 × 6 grid. Let task τS = (F,P) where F and P both consist of all 64
possible pictures. (In words: the agent’s task is, given any 1 × 6 picture, to identify the picture
exactly.) Then Lmin(C∗(τS), τS) ≥ 4.

Proof of Lemma 2. Assume towards a contradiction that there exists a code C under which
the task τS can be achieved with working memory capacity L = 3. Observe that with
L = 3, any deductive step (where at least one new feature is deduced) must involve
loading into working memory either (a) two or three 1× 1 features, or (b) one 1× 1 feature
and one larger feature (with a length-two codeword).

Index the 64 possible pictures as P1, . . . , P64.
We say that pattern q is almost complete if there exists a region R (that matches q’s

dimensions) and a 1 × 1 feature f ′ such that (q, R) and f ′ together identify some picture
P. In this case, we say that q almost identifies P.

We claim that any almost-complete pattern can almost identify a maximum of twelve
distinct pictures. To see why, note that any almost-complete pattern q must be either (i)
a 1 × 5 pattern consisting of a single 1 × 5 matrix [ p1 p2 p3 p4 p5 ], or (ii) a 1 × 6 pattern.
In case (i), one can see that exactly four distinct 1 × 6 pictures can be identified by the
combination of q and some 1 × 1 feature:

[ b p1 p2 p3 p4 p5 ] [w p1 p2 p3 p4 p5 ] [ p1 p2 p3 p4 p5 b ] [ p1 p2 p3 p4 p5 w ]

where b represents black and w represents white.

In case (ii), observe to start that there is a unique 1× 6 feature f associated with q. Further,
there are only twelve 1 × 1 features, and thus no more than twelve ways to pair f with
a 1 × 1 feature to uniquely identify a picture. In either case, it follows that q can almost
identify at most twelve distinct pictures.

Consider any picture P, and consider a working memory sequence such that P was
deduced at the end of period t. Notice that in period t, to have deduced P, the agent must
have loaded an almost-complete pattern q, together with a 1 × 1 feature, into working
memory in period t. Given that L = 3, C(q) must have length two (given that only
1 × 1-patterns have length one). However, there are only four length-two codewords,
and thus at most four corresponding almost-complete patterns that the agent can use in
identifying pictures. As each almost-complete pattern can almost identify at most twelve
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distinct pictures, the agent can deduce at most 48 distinct pictures. This is strictly less
than the entire set of 64 pictures, and establishes our contradiction.

Proof of Proposition 3. Consider a 1 × 6 grid. Enumerate the 64 possible 1 × 6 pictures as
P1, . . . , P64, in any arbitrary order. Consider a series of tasks τi = (F,Pi), i = 1, . . . , 64,
where

Pi = {P1, . . . , Pi} and F consists all all 64 possible 1 × 6 pictures.

Let Li = Lmin(C∗(τi), τi) be the minimum working memory required to achieve task τi.
Observe that L1 ≤ 3 (by Lemma 1); that Li is weakly increasing in i; and that L64 ≥

4 (by Lemma 2). Let j = min{i : Li ≥ 4}, and let τ′
j = (F, Pj). Assume towards a

contradiction that C∗(τj−1) ∩ C∗(τ′
j ) contains at least one element C.

We make two observations about C here. First, by definition of j, each picture in the
set Pj−1 can be identified under C with working memory constraint L = 3. Second,
it follows from Lemma 1 that Pj can also be identified under C with working memory
constraint L = 3. Combining these two observations, every picture Pi with i ∈ {1, ..., j}
can be exactly identified using code C and working memory constraint L = 3; it follows
that

Lmin(C∗(τj), τj) ≤ Lmin(C, τj) ≤ 3.

But this is a contradiction: by definition of j, we must have Lmin(C∗(τj), τj) ≥ 4. We
conclude that C∗(τj−1) ∩ C∗(τ′

j ) = ∅, and thus that the Proposition holds.

Proof of Proposition 4a. Fix α′ and α′′ ≤ α. Consider any working memory sequence
((W0, f0), (W1, f1), . . . ) that is feasible given threshold α′. We claim that this working
memory sequence is also feasible under threshold α′′, and thus that every feature that is
extrapolated under this working memory sequence given α′ is also extrapolated under
α′′.

For each t, if ft can be extrapolated given Wt under α′, it can also be extrapolated
under α′′ (because the fit requirement is relaxed). It follows by induction on t, starting
from t = 0, that sequence ((W0, f0), . . . , (Wt, ft)) is feasible under α′′ if it is feasible under
α′. The claim, and part 1 of the Proposition, follows.

Observe further that when α = 1, ft is extrapolated under Wt if and only if ft can be
deduced from Wt. The following claim then follows by induction on t: for any feasible
working memory sequence ((W0, f0), (W1, f1), . . . ), each Wt consists only of features that
apply to P. Part 2 of the Proposition follows.

Proof of Proposition 4b. The proof of Part 1 of the proposition is identical to that of Part 1
of Proposition 4a.

For Part 2, observe that when α = 1, ft is extrapolated under Wt if and only if ft can
be deduced from Wt. The following claim then follows by induction on t, with t = 0 as
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the base case: for any feasible working memory sequence ((W0, f0), (W1, f1), . . . ), each Wt
consists only of features that can be deduced from K0; that is, features that are definitely
true based on K0. Part 2 of the Proposition follows.

Proof of Proposition 5. Under C′, given that f is in E′, there exists some feasible working
memory sequence ((W0, f0), . . . , (Wt, ft)) where f = ft is extrapolated for the first time in
period t. Given that C′ and C are identical outside of q, it follows that {(W0, f0), . . . , (Wt, ft)}
is also feasible under C, and thus f is also in E.

Consider the following example. Suppose L = 4, α = 1, and P is the 2 × 1 picture
consisting of two white pixels. Let q be the 2× 1 pattern that exactly identifies P. Suppose
q’s codeword in C has length 2 and q’s codeword in C′ has length 3. Given that α = 1,
f = (q, R) can only be extrapolated from Wt if it can be deduced from Wt. But this would
require that both pixels of the picture, as well as f , are loaded into working memory.
This is feasible under C (where the working memory requirement would be four) but not
under C′ (where the working memory requirement would be five). It follows that f /∈ E′

and f ∈ E.

For the proofs of Propositions 6, 7, and 8, we will appeal to the setting described in
the following Lemma. This setting is applicable to the baseline extrapolation model of
Section 3, as well as the model of Section 4 where deletions are possible.

Lemma 3. Let Picture P be the 3 × 3 “checkerboard” matrix where pixel pij is black if i + j is
even and white if i + j is odd (see Figure 19). Let K0 be the set of all nine pixels of P. Define the
following 3 × 3 patterns. Pattern qr consists of all 3 × 3 matrices with at most one white pixel.
Pattern q′r consists of all 3 × 3 matrices where the two leftmost columns have at most one white
pixel. Pattern qd consists of all 3 × 3 matrices with at most one black pixel. Pattern q′d consists
of all 3 × 3 matrices where the two leftmost columns have at most one black pixel. Denote the
features corresponding to qr, q′r, qd, q′d by fr, f ′r , fd, f ′d respectively. Suppose that, under code C,
patterns qr, q′r, qd, and q′d have codewords of length two, and that no other patterns (other than
pixels) have codewords of length three or less. Finally, suppose that L = 4 and α = 0.3.

Figure 19: Picture P

1. The agent cannot extrapolate to fr, f ′r , fd, or f ′d from a single pixel (and nothing else) in
working memory.
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2. The agent cannot extrapolate to fr or f ′r when either fd or f ′d is in working memory, or vice
versa.

3. Let Wb (Ww) consist of any two of the black (white) pixels in P’s two leftmost columns. The
agent can extrapolate to fr and to f ′r by evaluating these features against the contents of Wb.
Analogously, the agent can extrapolate to fd and to f ′d by evaluating these features against
the contents of Ww.

4. When evaluating one of the features fr, f ′r , fd, or f ′d against a single pixel, fit is strictly
positive.

5. When evaluating either fr or f ′r against Ww, or when evaluating either fd or f ′d against Wb,
fit equals zero.

6. When evaluating any 3 × 3 feature, both fr and fd are strictly more powerful features than
f ′r or f ′d.

7. Let F′ = { fr, f ′r , fd, f ′d}. When evaluating any 3 × 3 feature, there is no feature (or set
of features) not in F′ that is both simpler and more powerful—with at least one inequality
strict—than any f ′ ∈ F′. Further, each feature f ′ ∈ F′ strictly dominates any other feature
(except the 1 × 1 features and the features in F′), and also strictly dominates any set of two
or more features.

Proof.

1. Restrict attention to fr and f ′r (without loss). Feature fr’s fit when evaluated against
a single black pixel is ≈ 0.17. Feature f ′r ’s fit when evaluated against a single black
pixel in one of the two leftmost columns is ≈ 0.29. These are the fit-maximizing
choices for evaluating fr and f ′r against a single pixel; thus the threshold α = 0.3
cannot be met.

2. Notice that f ′d implies that there must be at least 5 white pixels in the two leftmost
columns of P; this is clearly inconsistent with both fr and f ′r . It follows that evaluat-
ing fr or f ′r against fd or f ′d—or vice versa—leads to a fit of zero.

3. When evaluating against Wb, fit is 1/3 in the case of fr and ≈ 0.54 in the case of f ′r ,
which exceeds the threshold α = 0.3 in both cases. The case of evaluating fd or f ′d
against Ww is symmetric.

4. At least one matrix in each of fr, f ′r , fd, and f ′d is consistent with any single pixel;
thus fit when evaluating against any single pixel is strictly positive.

5. This follows immediately from the definitions of fr, f ′r and Ww.

6. Let R be the region covering the entire 3 × 3 matrix. Then Z({ fr}, R) = 10; there is
one 3× 3 matrix with zero white pixels and nine 3× 3 matrices with one white pixel.
Symmetrically, Z({ fd}, R) = 10. We may also show that Z({ f ′r}, R) = Z({ f ′d}, R) =
56. The claim follows immediately.
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7. The only possible sets of features that are weakly simpler than any feature in F′ are
those sets consisting of (i) one 1 × 1 feature, or (ii) two 1 × 1 features. In both cases,
it is easy to check that each feature in F′ is strictly more powerful than such a set.

Proof of Proposition 6. Consider the setting of Lemma 3. We know from Lemma 3 that the
agent can extrapolate to fr if fd is not yet in knowledge (claim 3). However, once fd is
in knowledge, the agent cannot extrapolate to fr because Assumption 1 ensures that fd
will be prioritized in working memory over any other feature or set of features (claim
7), leading to a fit of zero (claim 2). Similarly, once fr is in knowledge, the agent cannot
extrapolate to fd. The result follows.

Proof of Proposition 7. Consider the setting of Lemma 3 and suppose further that β = 0.
We can rely on the claims in Lemma 3 to construct the following feasible sequence of
events: (i) add fd to knowledge (claim 3); (ii) delete fd from knowledge (claim 5); (iii) add
fr to knowledge (claim 3); delete fr from knowledge (claim 5); and finally repeat (i) and
(ii). Such a sequence satisfies the cycling conditions specified in the proposition.

Proof of Proposition 8. Consider the setting of Lemma 3 and suppose further that β = 0.
Given a feasible working memory sequence, suppose fr or f ′r is in knowledge set Kt.

We claim that neither fd nor f ′d can be in Kt. For τ ∈ {0, . . . t}, let Sτ be the statement
“either fr or f ′r , and either fd or f ′d, are in Kτ.” Note that S0 is obviously false. Assume
towards a contradiction that St is true. Let t′ = max{τ : Sτ is false}, so that St′ is false
and St′+1 is true. Then in period t′, one of the following events must have occured: either
(i) one of fd and f ′d was added to knowledge while fr or f ′r was already in knowledge; or
(ii) one of fr and f ′r was added to knowledge while fd or f ′d was already in knowledge.
But, in light of Assumption 1, both cases contradict claims 2 and 7 of Lemma 3. Thus the
claim holds.

Suppose fr and f ′r are both in the knowledge set Kt, so that—by our claim above—
neither fd nor f ′d are in Kt. Then fr can never be subsequently deleted: given Assumption
1, claim 7 of Lemma 3 ensures that fr can only ever be evaluated against either a single
pixel or against f ′r . In both cases, fit exceeds the threshold β = 0, so fr is not deleted.
Similarly, f ′r will never be deleted.

Next, suppose fr but not f ′r is in the knowledge set Kt, so that—again by our claim
above—neither fd nor f ′d are in Kt. Then fr can be deleted in the next period by evalu-
ating it against Ww (claim 5 of Lemma 3). Similarly, f ′r can be deleted if fr is not in the
knowledge set. This establishes the result with f = fr and f ′ = f ′r .
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Proof of Proposition 9. Consider the following setting. P is a 2 × 1 picture where the top
pixel is black and the bottom pixel is white; q1 is a 2 × 1 pattern “there is exactly one
white pixel”; q2 is a 2 × 1 pattern “the picture is either all black or all white”; and f1
and f2 are the corresponding features (see Figure 20). Each of q1 and q2 have length-two
codewords; no other patterns have length-two codewords; and K0 is the set of both pixels
of P. Suppose α = 0.01, β = 0, and the agent’s working memory capacity is L = 3.

q1P q2

Figure 20: Proof of Patchwork Quilt

Consider the following sequence of extrapolations.

1. At t = 0, the agent evaluates f1 by loading the bottom (white) pixel into working
memory W0. The fit of f1 is then

Φ( f1, W0) = 1/2,

which meets the threshold α = 0.01; so f1 is successfully added to the knowledge
set.

2. At t = 1, the agent evaluates f2, again by loading the bottom (white) pixel into
working memory W1. (Note that Assumption 1 has no bite here, because no feature
is simpler than the single pixel.) The fit of f2 is then

Φ( f2, W1) = 1/2,

which again meets the threshold α = 0.01; so f2 is added to the knowledge set.

At the end of t = 1, f1 and f2 are both in the knowledge set. We claim that they will
both remain forever in the knowledge set. To see why, note that the two codewords for
f1 and f2 have length two, and thus (given L = 3) f1 and f2 can each only be removed by
evaluation against a single pixel with a length-one codeword. However, we know from
above that the fit from such an evaluation would be 1/2; given that β = 0, neither feature
will ever be deleted following such an evaluation.

A.2 Choice Problem: Analysis

This section analyzes the choice problem described in Section 5 and derives formulas for
parameters θ and η.
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Selective Attention. Suppose the agent considers whether to add fi to knowledge (i.e.
choose option i), loading a1 and a2 into working memory (which we denote, in a slight
abuse of notation, as Wt = {a1, a2}). To determine whether the agent adds fi, we need to
calculate the fit of fi given that Wt = {a1, a2}.

Let X ≡ ai − aj denote the apple-difference between options i and j. Let R denote the
region covering the entire picture. Observe that fi is a feature of region R, as it involves
all four pixels of P (it corresponds to the event u(ai, oi) ≥ u(aj, oj)).

Observe that:

• Z(∅, R) = (z + 1)4: when there are no “facts” in working memory (Wt = ∅), each
of the four pixels of P can take z + 1 values (any integer value between 0 and z).

• Z(Wt, R) = (z + 1)2: when the values of two pixels (a1 and a2) are loaded into
working memory, there are two remaining pixels that can take z + 1 values.

• Z(Wt ∪ { fi}, R) = |{(o1, o2) : oj ≤ oi + X}|, which is increasing in X.

Together, these results imply that Φ( fi, Wt) =
log(Z(∅),R)−log(Z(Wt),R)

log(Z(∅,R))−log(Z(Wt∪{ f },R)) is increasing
in X. Given that the agent adds fi to knowledge (i.e. chooses option i) if and only if
Φ( fi, Wt) ≥ α, it follows that the agent adds fi to knowledge if and only if X exceeds
some threshold θ, where θ is the smallest value of X that satisfies Φ( fi, Wt) ≥ α.

Satisficing. Next, suppose the agent considers whether to add fi to knowledge (i.e. choose
option i), loading ai and oi into working memory (Wt = {ai, oi}). To determine whether
the agent adds fi, we need to calculate the fit of fi given that Wt = {ai, oi}. Let Y ≡ ai + oi
denote the utility associated with option i.

Observe that, similar to the selective attention case, Z(∅, R) = (z+ 1)4 and Z(Wt, R) =
(z + 1)2. Furthermore: Z(Wt ∪ { fi}) = |{(aj, oj) : aj + oj ≤ Y}| is increasing in Y.

Together, these results imply that Φ( fi, Wt) =
log(Z(∅),R)−log(Z(Wt),R)

log(Z(∅,R))−log(Z(Wt∪{ f },R)) is increasing
in Y. Given that the agent adds fi to knowledge (i.e. chooses option i) if and only if
Φ( fi, Wt) ≥ α, it follows that the agent adds fi to knowledge if and only if Z exceeds
some threshold η, where η is the smallest value of Y that satisfies Φ( fi, Wt) ≥ α.

Suppose instead the agent attends to the attributes of option j (Wt = {aj, oj}) when
considering whether to add fi to knowledge (i.e. choose option i). Let Y′ ≡ aj + oj. Then,
observing that the expression Z(Wt ∪ { fi}) = |{(ai, oi) : ai + oi ≥ Y′}| is decreasing in Y′,
it follows that the agent adds fi to knowledge if Y′ falls below some threshold η′.

Complexity. Finally, consider a setting where there are n ≥ 2 options, with the n = 3 case
illustrated below:

P =
apples

oranges

[ option 1

a1

option 2

a2

option 3

a3
o1 o2 o3

]
.
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Suppose the agent satisfices: they consider (without loss of generality) whether to add
f1 to knowledge (i.e. choose option 1), loading a1 and o1 into working memory (Wt =
{a1, o1}). It is easy to verify, analogous to our calculations above, that the agent extrap-
olates to f1 if and only if Y = a1 + o1 exceeds some threshold ηn. We claim that ηn is
increasing in n (i.e. the satisficing threshold becomes harder to meet as the number of
options grows).49

Define Zn(Wt, R) to be the value of Z(Wt, R) given that there are n options. Observe
that Zn(∅, R) = (z + 1)2n and Zn(Wt, R) = (z + 1)2(n−1); so that

Φ( f1, Wt) =
logz+1(Zn(∅),R)−logz+1(Zn(Wt),R)

logz+1(Zn(∅,R))−logz+1(Zn(Wt∪{ f1},R))

= 2
2n−logz+1(Zn(Wt∪{ f1},R)) .

Observe that fixing n, Zn(Wt ∪ { f1}, R) and thus Φ( f1, Wt) are both increasing in Y. Con-
sequently, to establish the claim, it is sufficient to show that for fixed Y, Φ( f1, Wt) is de-
creasing in n; equivalently, that Zn+1(Wt∪{ fi})

Zn(Wt∪{ fi})
< (z + 1)2 for each n ≥ 1.

Recall that Zn+1(Wt ∪{ fi}) is the number of attribute combinations (a2, o2, . . . , an+1, on+1)
that satisfy the linear constraints aj + oj ≤ Y, j ∈ {2, . . . , n + 1}. Notice that for any com-
bination that is counted in Zn+1(Wt ∪ { fi}), the subsequence (a2, o2, . . . , an, on) must also
satisfy aj + oj ≤ Y, j ∈ {2, . . . , n}, and thus must be counted in Zn(Wt ∪ { fi}). For each
such subsequence, there are at most (z+ 1)2 possible pairs (an+1, on+1) to combine with; it
follows that Zn+1(Wt∪{ fi})

Zn(Wt∪{ fi})
≤ (z + 1)2. In fact, this inequality must be strict whenever Y <

2z, because any attribute combination (a2, o2, . . . , an+1, on+1) with (an+1, on+1) = (z, z)
would violate the linear constraints for Zn+1(Wt ∪ { fi}). The claim thus holds.

A.3 Persuasion: Analysis

The Role of Timing

We will fill in some details of the “timing” model from Section 6. The picture of interest is
a vector V = [p1 p2 p3 · · · pn] of n pixels with pi ∈ {good, bad} and n > 4. There are two
relevant features of the full vector: “good egg” where there are at most two bad pixels
and “bad egg” where there are at most two good pixels.

There is a representative voter learning about V. The voter extrapolates as in Section
4.3, with addition and deletion thresholds α and β.

Only four pixels are ever revealed to the voter (i.e. are added exogenously to the
knowledge set at some point). Two of these pixels are good and two are bad. These pixels
are revealed in two rounds. The two good pixels or the two bad pixels are revealed in the
first round; the remaining two pixels are revealed in the second round.

49We obtain an analogous result in the case of an agent who engages in selective attention (i.e. loads a1
and a2 into working memory to evaluate option i). Suppose we add attributes (e.g. bananas) and assume
utility is additive across attributes (i.e. u(a, o, b) = a + o + b, where b denotes bananas). In this case, the
threshold θ is increasing in the number of attributes.

65



In each round, after pixels are revealed, the voter has many (but finitely many) peri-
ods, t ∈ {0, 1, 2, . . . , T}, to make extrapolations. We assume that the voter undertakes a
“rich” sequence of extrapolations in each period, in the following sense: given the agent’s
knowledge sequence in that round, {K0, ..., KT}, any other knowledge set K′ that could be
attained by extrapolating from KT has been previously attained (i.e. K′ ∈ {K0, ..., KT}).

We will work through an example with the following specific parameters, keeping in
mind that the logic generalizes to a broader range of parameters. Assume that the voter
has working memory capacity L = 6; each pixel’s codeword has length one, “good egg”
and “bad egg” are features with codewords of length two, and no other features have
codewords of length six or less. Assume also that the picture has n = 7 pixels and that
the extrapolation thresholds are α = 1/2 for addition and β = 1/100 for deletion.

Assume, without loss of generality, that the two good pixels (collectively denoted
“GG”) are revealed to the voter in the first round, so that the two bad pixels are revealed
in the second round.

First Round. The voter can extrapolate to “good egg” by loading both good pixels into
memory:

Φ(good egg, GG) =
log(Z(∅, R))− log(Z(GG, R))

log(Z(∅, R))− log(Z(GG ∪ {good egg}, R))

=
2

n − log(1 + (n − 2) + (n − 2)(n − 3)/2)
= 2/3 > α

where R is the region covering the entire vector V. However, the voter cannot extrapolate
to “bad egg”:

Φ(bad egg, GG) =
log(Z(∅, R))− log(Z(GG, R))

log(Z(∅, R))− log(Z(GG ∪ {bad egg}, R))

=
2

n − log(1)
= 2/7 < α.

We can also easily check that the voter cannot extrapolate to any pixel p that wasn’t re-
vealed to them, because none of the revealed pixels or the “good egg” feature serve to pin
down p:

Φ(p, good egg) =
log(Z(∅, Rp))− log(Z(good egg, Rp))

log(Z(∅, Rp))− log(Z(good egg ∪ p, Rp))
= 0.

Given our assumption that the voter undertakes a “rich” set of extrapolations, they
must have “good egg” but not “bad egg” in knowledge at the end of the first period.

Second Round. At the start of the second round, the voter has two bad pixels, two good
pixels, and “good egg” (which they extrapolated to in the first round) in knowledge. If the
voter only has pixels in working memory, “good egg” cannot be deleted from knowledge
given the low threshold β; for instance, with both bad pixels in working memory,
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Φ(good egg, BB) =
log(Z(∅, R))− log(Z(BB, R))

log(Z(∅, R))− log(Z(BB ∪ {good egg}, R))

=
2

n − log(1)
= 2/7 > β.

Furthermore, Assumption 1 ensures that the voter cannot load two or more pixels into
working memory to evaluate “bad egg” without also loading “good egg” into working
memory. (“Good egg” takes up as much working memory as any two pixels and is strictly
more powerful: there are 32 possible pictures given those two pixels, while there are
only 29 possible pictures given “good egg”.) Given that “good egg” and “bad egg” are
mutually exclusive, the voter cannot extrapolate to “bad egg” by evaluating it against the
two bad pixels (and “good egg”). In addition, the voter cannot extrapolate to “bad egg”
by evaluating it against a single bad pixel (denoted B). In that case:

Φ(bad egg, B) =
log(Z(∅, R))− log(Z(B, R))

log(Z(∅, R))− log(Z(B ∪ {bad egg}, R))

=
1

n − log2(n + (n − 1)(n − 2)/2)
= 1/(7 − log2(22)) ≈ 0.39 < α.

It follows that the voter’s knowledge set remains unchanged at the end of the second
round. Since they think that candidate A is a “good egg,” they vote for candidate A.

The case where the two bad pixels are revealed in the first round is symmetric. The
voter extrapolates to “bad egg” in the first round; their knowledge set remains unchanged
in the second round; and they vote for candidate B.

Suggesting Narratives

We now turn to the “suggesting narratives” model. We adopt the same vector of pixels
V as in the “timing” model. There is a particular subset of four pixels, two good and
two bad, that we label the “story.” Assume that the agent has the same working memory
capacity, code, and thresholds α and β as they did in our example from the “timing”
model—only with features “forgivable” and “unforgivable” in place of “good egg” and
“bad egg.”

The voter knows none of the features of V at the start of the game. Candidates A and B
take turns influencing the voter, with candidate A moving first, as follows. At the start of
their turn, candidate A decides whether to reveal the story to the voter (i.e. add the four
pixels to knowledge). At the start of their turn, candidate B decides whether to reveal the
story if they are aware of the story (and the story has not been revealed already).

On each candidate’s turn, following their revelation decision, the voter engages in a
“rich” sequence of extrapolations over multiple periods, with corresponding knowledge
sequence {K0, ..., KT}. In periods t = 0 and t = 1, the active candidate can choose the
facts (W0 and W1) that the voter loads into working memory and the features ( f0 and f1)
that the voter evaluates against those facts—subject to Assumption 1.

Recall that if the voter knows the “forgivable” feature, they choose candidate A with
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probability p; if they know the “unforgivable” feature, they choose candidate A with
probability zero; and if they know neither feature, they choose candidate A with proba-
bility 1. Recall also that candidate B is aware of the story with probability q.

Consider candidate A’s decision about whether to reveal the story. Suppose candi-
date A reveals the story. Our analysis from the “timing” model tells us that candidate
A can, in period 0 of their turn, get the voter to consider the “forgivable” narrative
( f =”forgivable”) while focusing the voter’s attention on the good pixels (W0 = {GG}).
The voter will adopt the “forgivable” narrative; moreover, no further changes can be
made to the voter’s knowledge set on candidate B’s turn.

Notice also that if candidate A reveals the story but does not get the voter to con-
sider/adopt the “forgivable” narrative, candidate B can (and will) get the voter to con-
sider the “unforgivable” narrative—along with BB—on their turn. The voter then adopts
the “unforgivable” narrative and no further changes can be made to the voter’s knowl-
edge set.

It is thus optimal (conditional on the story being revealed) for candidate A to add
“forgivable” to knowledge, in which case candidate A wins with probability q.

Suppose now that candidate A does not reveal the story. If candidate B is aware of
the story (which occurs with probability p), they will reveal the story and add “unforgiv-
able” to the voter’s knowledge set. Otherwise, candidate B can do nothing, and the voter
has neither “forgivable” nor “unforgivable” in knowledge. Thus, candidate A wins with
probability 1 − p and loses with probability p.

Comparing these outcomes, candidate A prefers to reveal the story if and only if q >
1 − p (i.e. p + q > 1).
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