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Political Kludges†

By Keiichi Kawai, Ruitian Lang, and Hongyi Li*

This paper explores the origins of policy complexity. It studies 
a model where policy is difficult to undo because policy elements 
are entangled with each other. Policy complexity may accumulate 
as successive policymakers layer new rules upon existing policy. 
Complexity emerges and persists in balanced democratic polities, 
when policymakers are ideologically extreme, and when legislative 
frictions impede policymaking. Complexity begets complexity: sim-
ple policies remain simple, whereas complex policies grow more 
complex. Patience is not always a virtue: farsighted policymakers 
may engage in obstructionism, deliberately introducing complex pol-
icies to hinder future opponents. (JEL C73, D72, D73, D78)

The complexity of public policy imposes significant costs on society. The United 
States Internal Revenue Service estimated that the various costs of tax compli-

ance exceeded $168 billion in 2010, which was 15 percent of total tax receipts for 
that year.1 In many areas of policy ranging from the tax code to education to health-
care, such complexity is pervasive and persistent.

This paper studies the evolution of policy complexity. It develops a theory where 
policy complexity emerges in the course of political conflict. Successive policymak-
ers modify policy in pursuit of their own policy goals; they do so by layering new 
rules upon existing policy. As layers of rules accumulate, so does policy complexity.

A key aspect of our theory is that new rules take the form of kludges: piecemeal 
modifications that patch over old programs rather than replace them. Kludges serve 
to remedy flaws in the implementation of existing policy, or even cancel out their 
impact. As such, they improve on existing policy, but do so in an inelegant and 

1 This may not be too surprising, given that the US tax code contains more than four million words. 
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inefficient fashion relative to the alternative—to completely rewrite existing policy, 
unburdened by legacy concerns.2

We model a setting where policy control shifts intermittently between two rival 
policymakers. While in control, each policymaker may add or delete policy rules to 
achieve his ideological goal. By complexity we mean the measure of rules that make 
up policy (e.g., the number of lines in the tax code). In this setting, kludges are rules 
that are added to cancel out the ideological impact of old rules without having to 
delete those old rules. In other words, kludges allow policymakers to avoid elaborate 
policy overhauls, at the cost of excessive policy complexity.

This narrative has, so far, not yet addressed why policymakers may favor adding 
new rules as kludges, rather than deleting and replacing existing rules. Our theory 
incorporates features of the legislative process that are conducive to kludges. First, 
policymaking is incremental: rules may only be added or deleted gradually. Interest 
groups may oppose adding new rules that they dislike or deleting old rules that they 
like. Such resistance constrains policymakers with limited political capital from 
undertaking radical overhauls; instead, they make incremental changes.3

Further, rules are entangled with one another. Each rule is designed to fit well 
with the rest of policy—either by legislative intent, or through subsequent adminis-
trative and judicial interpretation of enacted legislation. Rules may rely on features 
of other rules, or fill gaps in other rules, or build upon other rules to modify their 
effect. Such interdependencies between rules create entanglements that hinder the 
undoing of existing policy. Deletion of a rule may cripple other dependent rules that 
rely on the functionality of the deleted rule. Consider the Alternative Minimum Tax 
(AMT) in the US Tax Code. Many observers deem the AMT to be an unsatisfactory 
solution to the problems it was intended to solve, but also believe that it will be diffi-
cult to undo or significantly edit the AMT because many other aspects of the federal 
tax system have come to rely on the AMT.

In this paper, such entanglements are modeled as an exogenous constraint on the 
ability of policymakers to precisely undo existing policy. Essentially, an existing 
rule cannot be deleted without also deleting other rules that are (randomly) entan-
gled with the targeted rule.

Consequently, each policymaker faces a trade-off between improving his ideo-
logical position and reducing policy complexity. He may add new rules that favor 
his ideological position. Or, he may delete rules that detract from his position. 
Deletion has the benefit of reducing complexity. However, the deletion process 
is stymied by entanglement. Unfavorable rules cannot be deleted surgically; they 
may be entangled with favorable rules that have to be deleted as well, thus slowing 

2 One example of policy kludge is the US Affordable Care Act (ACA) of 2010, which introduced mechanisms 
(including mandates, subsidies, and insurance exchanges) to fill gaps in the existing patchwork of private and public 
insurance options. A common view of both proponents and opponents was that the ACA is excessively complex 
compared to alternatives such as a single-payer healthcare system. These alternatives, however, would have required 
a politically infeasible complete overhaul of healthcare policy. 

3 For recent discussion, see Levy and Razin (2013) and Teles (2013). Further, besides political constraints, 
cognitive limitations may introduce uncertainty about the impact of large-scale policy changes and thus force pol-
icymakers to focus on making small “local” changes to policy (see, e.g., Lindblom 1959; Bendor 1995; Callander 
2011a, b). 
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progress toward—or even moving policy away from—the policymaker’s position. 
Entanglements thus induce a bias toward adding rather than deleting rules.

In this setting, we analyze the long-run evolution of policy under political con-
flict. The main dynamic effects are not driven by strategic interactions between poli-
cymakers. In fact, for most of this paper, we completely ignore strategic interactions 
by focusing on myopic policymakers. We demonstrate how, and under what circum-
stances, complexity may emerge and persist from such myopic dynamics.

Our first finding is that initial conditions matter. We show that when complexity 
is high, all parties are particularly prone to adding further complexity in the form of 
kludges. Consequently, complexity begets complexity: simple policies remain sim-
ple forever, whereas complex policies may become increasingly complex.

When complexity is high, policy evolution switches intermittently between two 
phases. In one phase, the policymaker in control adds rules to shift policy toward his 
favored position, increasing complexity as he does so. In the other phase, the pol-
icymaker in control has attained his policy goals, and deletes rules to reduce com-
plexity. So, long-run outcomes are determined by the tug-of-war between these two 
phases, which exert opposite forces on complexity. If the first force is more powerful 
than the second, then complexity may accumulate and become unbounded over the 
long-run—in which case we say that policy becomes kludged.

Having identified this tension, we characterize conditions under which policy 
may become kludged. One set of comparative static results relates to political 
institutions:

• Policy is likely to become kludged if parties hold control for relatively equal 
periods, i.e., political power is relatively balanced.

• Policy is likely to become kludged if power transitions between parties occur 
frequently; for example, if electoral terms are short.

• Policy is likely to become kludged if legislative friction is high; that is, if the 
legislative process is slowed by procedural hurdles such as veto points.

The same institutional features that generate kludged policies also serve to reduce 
ideological polarization in policy outcomes. Indeed, our results highlight a trade-off 
in the design of political institutions between policy outcomes that are simple but 
ideologically polarized, and outcomes that are complex but ideologically moderate.

Thus, viewed through the lens of our theory, the American political system is 
geared toward generating ideologically moderate political outcomes (relative to the 
preferences of its political parties)—but with the downside of complex, kludged 
public policy. After all, American electoral competition has historically been rela-
tively balanced and volatile, with control over the presidency and congress switch-
ing regularly between the two major parties over the past decades. Further, many 
hurdles in the American legislative process, such as supermajority voting require-
ments, a proliferation of veto points, and filibuster rules, hinder the creation of 
new laws and the undoing of existing laws. Conversely, a planner who prioritizes 
complexity reduction over ideological moderation should design political institu-
tions that weaken (or even eliminate) political competition and minimize legisla-
tive frictions.
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Another set of comparative statics relates to political preferences. We show 
that policy is likely to become kludged as parties’ preferences become more 
polarized—that is, as the ideological distance between parties’ favored positions 
increases, and also as parties’ preferences over positions become more intense. 
These results suggest the following connection between two trends in American pol-
itics: an inexorable increase in policy complexity over recent decades (Teles 2013) 
may have been driven by increasing polarization in political preferences over the 
same period.4

Later in the paper, we move to a setting with forward-looking parties, so that 
strategic interactions come into play. Here, the main lesson is that patience is not 
necessarily a virtue. A forward-looking party may engage in obstructionism: he 
makes policy changes not to achieve his own policy goals, but rather to hinder his 
opponent’s future policy moves. Specifically, in a conflict between ideologically 
zealous policymakers, parties exhibit strategic extremism. Each policymaker pur-
sues policy positions that are even more ideologically extreme than his preferences 
would naively dictate. This serves to “shift the goalposts” against his opponent, 
which ensures that policy remains relatively close to the policymaker’s preferred 
positions in the medium run.5 Such strategic extremism has long-run consequences 
for policy complexity. In particular, relative to the myopic case, strategic extremism 
may increase the probability that policy becomes kludged.

Literature Review.—Most closely related is Ely (2011), who studies how inef-
ficiency—in the form of kludged designs—may arise and persist in single-player 
adaptive processes. Ely (2011) considers a genetic code—a set of genes—that per-
forms well if each gene aligns appropriately with the environment, as mediated by 
the alignment of a particular “master gene.” A code is kludged if the “master gene” 
is poorly aligned with the external environment. In an evolutionary setting where the 
genetic code grows increasingly long while being subject to fitness selection over 
random mutations, Ely (2011) focuses on showing that kludge may persist indef-
initely: even though mutations may be arbitrarily large and thus a mutation that 
unkludges the code while maintaining internal alignment will eventually occur for 
any fixed code length, the increase in code length over time ensures that such muta-
tions grow increasingly rare, and in fact may never occur. Ely (2011) shares with our 
paper the central conceit of kludges: that interdependencies between elements make 
kludges difficult to undo, and that increases in complexity lengthen the process of 
undoing kludges. But our approach differs in various ways. We highlight three clear 
distinctions here. First, Ely (2011) introduces a “mechanical” evolutionary force that 
increases complexity over time, whereas in our model, players endogenously choose 
whether to increase complexity. This difference reflects our model’s central focus 
on understanding the origins of complexity, whereas complexity in Ely (2011) is 

4 McCarty, Poole, and Rosenthal (2006) find that American political parties have become increasingly extreme 
since the 1970s; Azzimonti (2018) finds that political disagreement between parties has intensified during the same 
period. 

5 Glaeser, Ponzetto, and Shapiro (2005) present a voting model where politicians may declare extreme positions 
(relative to the voting public) to pander to their base. In contrast, in our model, politicians may implement extreme 
policies (relative to their own preferences). 
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principally a device to inhibit unkludging.6 Second, we consider a two-player game 
between policymakers with conflicting objectives to highlight the role of political 
competition in producing kludges; in a one-player version of our model, kludges 
would never persist. Third, moving beyond the focus in Ely (2011) on a single myo-
pic player, we discuss how conflict and strategic motives may lead to kludges.

Like our paper, Gratton et al. (2017) study the dynamics of policy complexity. In 
their model, policymakers enact legislation purely to bolster their reputation with the 
public. Reputational incentives to avoid bad legislation are muted if existing policy is 
already complex, potentially leading to a “complexity trap” that is superficially rem-
iniscent of our model’s path dependence result—albeit via a different mechanism.

A number of other papers from various literatures explore the idea that incre-
mental rule development may be path-dependent. Callander and Hummel (2014) 
consider a model where successive policymakers with conflicting preferences strate-
gically experiment to find their preferred policy. The first policymaker benefits from 
a “surprising” experiment outcome because it deters experimentation by the second 
policymaker, and thus preserves any policy gains by the first policymaker. Ellison 
and Holden (2013) study a model of endogenous rule development where there are 
exogenous constraints on the extent to which new rules may “overwrite” old rules. 
Compared to these models, our paper introduces path dependence through a distinct 
mechanism—entanglement—and thus produces very different implications.

Our results on strategic extremism are also related to the literature on agenda-set-
ting in politics. Chen and Eraslan (2017) consider a model where competing pol-
icymakers take turns to address outstanding policy issues; their key assumption is 
that an issue that has previously been addressed cannot be revisited by subsequent 
policymakers. Dziuda and Loeper (2016) and Buisseret and Bernhardt (2017) con-
sider settings where this period’s policy outcome is determined by the interaction 
between competing policymakers, and serves as an endogenous status quo for the 
next period.7 Dziuda and Loeper (2016) find that the endogenous status quo assump-
tion may lead to policymakers taking extreme positions in bargaining, leading to 
policy gridlock; this logic is reminiscent of our strategic extremism results. On the 
other hand, Buisseret and Bernhardt (2017) find that strategic concerns may restrain 
the agenda-setter from aggressive policy-setting. These papers do not address pol-
icy complexity, which is of course the central focus of the present paper. Further, 
unlike these other papers, the status-quo effect in the present paper is technological; 
any changes to policy take time for future policymakers to undo, which drives the 
dynamics of policy position and complexity.

I. Model

Policy.—The policy is a set of infinitesimal rules. Each rule’s ideological direction 
is either positive (+) or negative ( − ). The policy is summarized as a pair of numbers  

6 Relatedly, whereas unkludged codes can be arbitrarily complex in Ely (2011), kludge and complexity are 
essentially synonymous in our model. 

7 Other papers in this literature include Bernheim, Rangel, and Rayo (2006); Messner and Polborn (2012); and 
Levy and Razin (2013). 
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p =  (  p +  ,  p −  )   , where   p j   ≥ 0  is the mass of rules with direction  j ∈ {+, − } . The 
policy’s position is the difference between the masses of positive and negative rules,

  p =  p +   −  p −  ; 

and the policy’s complexity is its total mass, denoted as

  ǁ p ǁ =  p +   +  p −  . 

Policy evolves in continuous time,  t ≥ 0 . So we write, for example,  p(t)  
=  ( p +   (t),  p −   (t))  ; but we will often conveniently suppress the time-dependence of 
policy variables. We take the initial policy  p(0)  as given, i.e., as a primitive of the 
model.

Players and Preferences.—There are two Parties,  +1  and  − 1 , generically iden-
tified as  i . The flow payoff of Party  i ∈ {+1, − 1}  is a function of policy position 
and complexity:

(1)   u i   (p)  = −  z i    | p −  p  i  ∗  |  − ǁ p ǁ  ,

where   p  i  ∗  ∈ 핉  is his positional ideal,   | p −  p  i  ∗  |   is the absolute value of  p −  p  i  ∗  , and   
z i   > 1  is his ideological zeal. That is, parties dislike policy positions that are distant 
from their ideals, and dislike complex policies. We assume that   p  +1  ∗   > 0,  p  −1  ∗   < 0 ;  
and that   z +1   > 1,  z −1   > 1 .8

Some descriptive terminology: parties with small (large)  |  p  i  ∗  |  are called moder-
ates (extremists). Parties with high   z i    are zealous. A policy with position  p =  p  i  ∗   is  
i -ideal.

Each Party  i  maximizes his discounted payoff,

   max  
 
     E [ ∫ 

0
  
∞

    u i   (p(t))   e   − r i  t  dt] . 

Most of this paper considers myopic parties:   r +1  ,  r −1   → ∞ . Two features of myo-
pic behavior are convenient. First, strategic interactions vanish: a myopic Party  i  is 
unconcerned about what his opponent  − i  does after  i  loses control. Second, only the 
neighborhood of the current policy  p(t)  is relevant because only nearby policies can 
be attained in the near future. In particular, as   r i   → ∞ , Party  i ’s problem reduces to 
maximizing the rate of change of his payoff,

(2)   max  
 
     {  d __ 

dt
    u i   (p(t)) } . 

8 The assumption   z i   > 1  ensures that parties have sufficiently intense preferences over ideological position, 
and thus face a nontrivial trade-off between adding and deleting rules. Alternatively, one might posit that payoffs 
are quadratic in position,   u i   (p)  = −  z i     ( p  i  ∗  − p)    2  − ǁ p ǁ , so that Party  i ’s positional preferences intensify as policy 
strays from   p  i  ∗  . This alternative formulation is analytically and expositionally less convenient, but produces quali-
tatively similar results. 
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Policymaking Technology.—At any time  t  , one party is in control; label him as  
i(t) ∈ {+1, − 1} . Control transitions from  i  to  − i  are random and arrive at rate   
λ i   > 0 . Without loss of generality, Party  +1  starts the game in control:  i(0) = +1 .  
We interpret   λ i    as  i ’s political vulnerability.

At each time  t  , Party  i(t)  chooses nonnegative addition rates   α +   (t),  α −   (t)  and 
deletion rates   δ +   (t),  δ −   (t) , which move   ( p +  ,  p −  )  :

(3)    d __ 
dt
    p j   (t) =  α j   (t) −  δ j   (t) for each j ∈ {+, − }, 

subject to a flow constraint, reflecting the party’s limited capacity to make policy 
changes, where   γ   −1   parametrizes the degree of legislative friction:

(4)   α +   (t) +  α −   (t) +  δ +   (t) +  δ −   (t) ≤ γ,

  δ j   (t) = 0  if   p j   (t) = 0  for j ∈ {+, −},  

and an entanglement constraint on the direction of rule deletion:

(5)     δ +   (t) ____  δ −   (t)   =    p +   (t) ____  p −   (t)  . 

In words, the entanglement constraint states that deleted rules must have the same 
proportions, by direction, as existing rules. This specification of the entanglement 
constraint is quite tight: given (total) deletion rate

  δ(t) =  δ +   (t) +  δ −   (t), 

each of   δ +   (t)  and   δ −   (t)  are fully determined from ( 5 ). Consequently, we may use  
δ(t)  to summarize the pair of deletion rates   ( δ +   (t),  δ −   (t))  .

Discussion of the Entanglement Constraint.—The entanglement constraint ( 5 ) 
captures, in reduced form, the notion of dependencies between rules. The premise 
is that parties cannot surgically target specific rules for deletion: a party who targets 
rule  π  for deletion has to also delete other rules that are entangled with  π .

The specific form of ( 5 ) is a tractable depiction of severe entanglement, whereby 
each rule is entangled with many other rules. If policy is severely entangled, then 
deletions will mostly be “indirect” (i.e., of rules entangled with targeted rules) rather 
than “direct” (i.e., of targeted rules). Consequently, parties will have little control 
over the directions of deleted rules, especially if they have limited knowledge about 
which rules are entangled with each other. The overall composition of deleted rules 
will match the composition of the policy as a whole, rather than the direction of 
those rules targeted for deletion. This notion is captured succinctly by our entangle-
ment constraint ( 5 ).

In Appendix A, we argue that our formulation of the entanglement constraint is 
quite natural. We present two alternative approaches to model the notion of policy 
entanglements, and show that both models generate our entanglement constraint 
under assumptions that reflect severe entanglement.
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Appendix A, Part 1 considers a linear network. Rules are totally ordered along a 
line. A party who seeks to delete a rule  π  first has to delete all the rules above  π  in 
the ordering. This model produces ( 5 ) as a limiting outcome when the number of 
rules is large.

Appendix A, Part 2 considers a random network where any two rules are con-
nected with some small probability. Dependencies are captured by the network struc-
ture: when a policymaker targets a rule  π  for deletion, he also has to delete all of  π ’s 
 neighbors. This model produces ( 5 ) at the limit where each rule has infinitely many 
neighbors. Away from this limit, so that entanglement is not severe, a looser version 
of the entanglement constraint is obtained; we show that our results continue to hold 
there as well.

Policy Simplicity and Efficiency.—The following terminology will be helpful. 
Let the policy’s positive-simplicity be the ratio of position to complexity,  p/ǁ p ǁ ∈  
[−1, 1]  . (Conversely, negative-simplicity is defined as  − p/ǁ p ǁ .) So, a policy that is 
very  j -simple (   j -simplicity close to one) consists mostly of direction- j  rules.9

Correspondingly, let the policy’s simplicity be  | p |/ǁpǁ , where  | p | = |  p +   −  p −   |   
is the absolute value of position. That is, policy is simple if most rules have the same 
direction. Restated slightly, policy is simple if complexity  ǁ p ǁ  is low relative to  | p | .  
At the extreme, if all rules have the same direction, then  | p | = ǁ p ǁ , and we say that 
policy is perfectly simple.

Notice that any policy  p  that is not perfectly simple, so that  | p | < ǁ p ǁ , is inef-
ficient in the following sense: an alternative policy that achieves the same position  
p —but has lower complexity—can be constructed by deleting equal masses of pos-
itive and negative rules from  p . Indeed, both parties dislike complexity and thus are 
strictly better off under this alternative policy than under  p .

II. Myopic Dynamics

This section considers myopic parties, who maximize their objective (2) subject 
to the flow and entanglement constraints: (4) and (5).

A. Short-Run Dynamics

We start by characterizing each party’s optimal addition and deletion choices at 
each instant, which determine how policy  p  evolves in the short run. This sets the 
stage for Section IIB to discuss long-run outcomes.

It is also instructive to rewrite the law of motion (3) in terms of complexity  ǁ p ǁ  
and position  p :

(6a)    d __ 
dt
   ǁ p(t) ǁ =  α +   (t) +  α −   (t) − δ(t),

(6b)   d __ 
dt
   p(t) =  α +   (t) −  α −   (t) − δ(t)   p(t) ______ ǁ p(t) ǁ  . 

9 Indeed,  j -simplicity   (j   p ___ ǁ p ǁ   =   
 p j   −  p −j   _____  p j   +  p −j    )   is just the difference between the proportion of direction- j  and the 

proportion of direction- ( − j)  rules in the policy. 
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Figure 1 illustrates how complexity and position change as rules are added or 
removed. Complexity  ǁ p ǁ  increases at unit rate when adding rules in either direc-
tion, and decreases at unit rate when deleting rules. Position  p  increases (decreases) 
at unit rate when adding positive rules (negative rules). The effect of deletion on 
position  p  is more subtle. Under deletion, position shifts at rate  − p(t )/ǁ p(t)ǁ : equal 
in magnitude to the policy’s simplicity, and with opposite sign. For example, with 
a relatively positive-simple policy, deletion would shift position “downward” rela-
tively quickly, as many more positive rules than negative rules are deleted. This has 
a straightforward geometric interpretation, highlighted in Figure 1: deletion moves  
p  toward the empty policy  (0, 0) . Note that  | p(t)|/ǁ p(t)ǁ ≤ 1 : the rate at which 
position shifts under deletion is (weakly) lower than under addition. Only for per-
fectly simple policies does deletion shift position as rapidly as addition (in the cor-
responding direction).

For concrete exposition, focus on Party  +1 .10 Figure 2 illustrates Party  +1 ’s 
optimal strategy by depicting, as a function of complexity  ǁ p ǁ  and position  p  , the 
direction in which policy evolves.

Start with policies that lie “below”  +1 ’s ideal   ( p <  p  +1  ∗  )  . Here, Party  +1 ’s pay-
off function (1) simplifies to

   u +1   (p)  =  z +1   ( p −  p  +1  ∗   ) − ǁ p ǁ; 

Party  +1 ’s payoff improves as complexity  ǁ p ǁ  decreases, and as position  p  
increases toward    p  +1  ∗   . Combining this observation with the laws of motion (6a) and 
(6b) yields

(7)    d __ 
dt

    u +1   (p)  =  α +   ( z +1   − 1)  +  α −   (−  z +1   − 1)  + δ (−  z +1     
p ____ ǁ p ǁ   + 1) . 

This representation clarifies the pros and cons of adding versus deleting elements. 
Party  +1  has two partially conflicting goals: to increase position  p  toward his ideal, 

10 The focus on Party  +1  is without loss of generality; by symmetry, Party  +1 ’s and Party  − 1 ’s optimal strate-
gies are identical, up to a reversal of directions + and  − . 

add+

remove

p

|| p ||

p+1
*

p−1
*

add−

0

Figure 1.   (  d __ 
dt

   ǁ p ǁ,   d __ 
dt

   p)   under Addition and Deletion
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and to reduce complexity. Clearly, adding negative rules is never optimal for  +1 : 
complexity increases and position moves “downward,” away from   p  +1  ∗   . So, the rele-
vant trade-off for  +1  is between adding (positive) rules and deleting rules. Deletion 
reduces complexity. But, relative to positive addition, deletion slows or even reverses 
the shift in position towards  +1 ’s ideal, especially if policy is highly positive-simple 
(so that deleted rules are mostly positive).

Given this trade-off, Party  +1  optimally deletes rules if and only if policy is suffi-
ciently negative-simple, so that deleted rules are mostly negative (and thus are “bad” 
for  +1 ); specifically, if and only if  − p/ǁ pǁ > 1 − 2/ z +1   . This deletion region, 
shaded grey in Figure 2, panels A and B, shrinks as   z +1    increases: a zealous party 
prioritizes positional gains over complexity reduction, and thus favors positive addi-
tion over deletion. On the other hand, wherever policy is sufficiently positive-simple 
(and lies below   p  +1  ∗   ), Party  +1  optimally adds positive rules.

The case where position lies above  +1 ’s ideal   ( p >  p  +1  ∗  )   is identical, except 
that directions are reversed:  +1  has to move “downward” to get closer to his ideal. 
Here, Party  +1  optimally deletes rules if and only if  p  is sufficiently positive-simple  
  (p/ǁ pǁ > 1 − 2/ z −1  )  , and optimally adds negative rules otherwise.

To summarize our discussion above, the following proposition specifies Party  i ’s  
optimal choice at nonideal positions   ( p ≠  p  i  ∗ )  . It states that  i  deletes rules if a suffi-
ciently large proportion of rules are “bad” for him, and adds rules otherwise. Formal 
proofs are given in online Appendix B.

PROPOSITION 1a: Suppose that Party  i  is in control and that policy  p  is not  i -ideal   
( p ≠  p  i  ∗ )  . Let j = sgn( p −   p  i  

∗  ) be the direction from Party  i ’s ideal   p  i  ∗   to the pol-
icy’s position  p ; that is,  j  is the direction of “bad” rules:

 (i) If policy is sufficiently  j -simple   (j   p ___ ǁ p ǁ   > 1 −   2 __  z i    )   , then Party  i  deletes rules:  
δ = γ .

 (ii) Otherwise, if  j   p ___ ǁ p ǁ   < 1 −   2 __  z i      , then Party  i  adds direction- j  rules:   α j   = γ .

The final case consists of policies at Party  +1 ’s ideal   ( p =  p  +1  ∗  )  . Here,  +1  
has achieved his ideal position, and thus seeks to reduce complexity as quickly as 

pp

z + 1 > 2 z +1 < 2

|| p |||| p ||

p+1
*

p−1
*

0

p+1
*

p−1
*

0

Panel A. Panel B.

Figure 2. Party +1’s Optimal Strategy
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 possible while shifting position as slowly as possible. Thus, he optimally deletes 
rules if he is not too zealous and if policy is not too simple, so that deletion does 
not shift position away from his ideal too quickly. Otherwise, he instead chooses an 
appropriate combination of addition and deletion to maintain position at his ideal 
while reducing complexity.11

PROPOSITION 1b: Suppose Party  i  is in control and policy  p  is  i -ideal,  p =  p  i  ∗  :

 (i) If policy is sufficiently simple   (  |p| ___ ǁ p ǁ   > 1 −   2 __  z i    )  , then Party  i  reduces complex-
ity while staying on his ideal:

  ( α j  ,  α −j  , δ) = γ ·  (  |p| ______ ǁ pǁ  + |p|  , 0,   ǁ pǁ ______ ǁ pǁ  + |p|  ) ,  so that

   d __ 
dt
   ǁ p(t)ǁ  = − γ   ǁ p ǁ  − p _____ ǁ p ǁ  + p     and    d __ 

dt
   p(t) = 0. 

 (ii) Otherwise, if    |p| ___ ǁ p ǁ   < 1 −   2 __  z i      , then Party  i  deletes rules:  δ = γ .

B. Path Dependence and Kludge

We now consider long-run policy dynamics. To move beyond the short run, 
we have to account for how political competition—as captured by the (random) 
switches of control between parties—affects the evolution of policy.

We will make two points about long-run outcomes. First, policy complexity is 
path-dependent: the starting point of policy strongly influences the long-run distri-
bution of complexity. Second, there is a tight long-run relationship between com-
plexity and the distribution of policy positions.

The following terminology hints at the outcomes we will be analyzing. We say 
that policy becomes kludged if   lim  t→∞      ǁ p(t)ǁ  = ∞ . We will focus on two statistics 
for the long-run distribution of complexity: the probability  κ  that policy becomes 
kludged, and a binary indicator  K  for the possibility of kludge,

  κ =  Pr  
 
 
 
   [  lim  

t→∞
  

 
   ǁ p(t)ǁ = ∞]   and  K =  { 0 : κ = 0   

1 : κ > 0
  . 

As a preliminary, observe that any starting policy eventually becomes regular, 
i.e., positioned at or between the parties’ ideals:  p ∈  [  p  −1  ∗   ,  p  +1  ∗  ]  . This is unsurpris-
ing. If policy position lies outside the ideals, then both parties will act to shift policy 
position in the same direction—toward the positional interval   [  p  −1  ∗  ,  p  +1  ∗  ]  , where both 
ideals lie. Only for regular policies does positional conflict arise between the par-
ties’ preferences, leading to interesting dynamics.

11 At the perfectly simple  i -ideal policy, where   p sgn(i)    =   p  i  
∗  , Party  i  cannot reduce complexity any further with-

out moving away from his ideal, and policy stagnates:    d __ 
dt
   p =   d __ 

dt
   ǁ p ǁ = 0 . 
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REMARK 1:

 (i) Suppose that policy  p(t)  is regular, i.e.,  p(t) ∈  [ p  −1  ∗  ,  p  +1  ∗  ]  . Then policy 
(surely) remains regular forever.

 (ii) Suppose that policy  p(t)  is not regular. Then policy (surely) becomes regular 
at some finite random time  τ > t , and remains regular thereafter.

Remark 1 permits us to restrict attention to regular policies. We do so henceforth.
Our first result highlights one aspect of path dependence: simple policies remain 

simple. Let the basin  be the set of regular policies at which at least one party 
chooses to delete rules (c.f. Propositions 1a and 1b):

(8)   =  {p  :   (−  p ___ ǁ p ǁ    ≥  1 −   2 ___  z +1      or   p ___ ǁ p ǁ   ≥ 1 −   2 ___  z −1    )  and p ∈  [  p  −1  ∗   ,  p  +1  ∗  ] } . 

Policies that are trapped within the basin can never escape, and tend to grow sim-
pler over time. (See Figure 3.)

PROPOSITION 2: Suppose that policy lies within the basin:  p(t) ∈  :

 (i) Policy (surely) remains within the basin forever:  p (t′ )  ∈   for all  t′ ≥ t .

 (ii) Policy (almost surely) becomes perfectly simple at some finite random time  
τ ≥ t .

 (iii) A perfectly simple policy (surely) remains perfectly simple forever.

If both parties are sufficiently zealous   ( z +1   > 2  and   z −1   > 2)   , then the basin    
consists of relatively simple policies. In this case, the intuition for Proposition 2 can 
be cleanly stated: sufficiently simple policies grow (weakly) monotonically simpler. 
This is because neither party benefits from reducing simplicity by “contaminating” a 
sufficiently simple policy with new rules of the minority type. (See Figure 3, panel A.)

To fix ideas, consider a (regular) policy that is highly positive-simple. From Party  
+1 ’s perspective, the policy’s position is either at or below his ideal   (p ≤  p  +1  ∗  )  . He 

p p
z + 1 > 2, z − 1 > 2 z + 1 > 2, z − 1 < 2

|| p || || p ||
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p+1
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Panel A. Panel B.

Figure 3. Basin  (shaded gray region)
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adds positive rules if  p <  p  +1  ∗   . He reduces complexity, while maintaining position, if  
p =  p  +1  ∗   . In either case, simplicity increases. From Party  − 1 ’s perspective, the poli-
cy’s position is above his ideal   (p >  p  −1  ∗  )  . He faces a trade-off between adding neg-
ative rules and deleting rules. But, because policy is mostly positive-simple, deletion 
(of mostly positive rules) is optimal for  − 1 . This leaves policy simplicity unchanged.

Given these incentives, simple policies grow progressively simpler as control 
changes hands between the two parties. In fact, any policy within    eventually 
becomes perfectly simple, and remains so. In other words,  serves as a basin of 
attraction for the set of perfectly simple policies.12

As the parties become less zealous, the basin expands to include less-simple 
policies. If either party is insufficiently zealous   ( z +1   ≤ 2 or  z −1   ≤ 2)  , the basin 
even contains all policies below or above the  ǁ p ǁ -axis   ( p ≤ 0 or p ≥ 0)  .  
(See Figure 3, panel B.) In this case, the basin becomes infinite in extent. 
Consequently, any starting policy inevitably becomes captured within . Long-run 
dynamics are mundane in this case.

REMARK 2: Suppose that   z +1   ≤ 2  or   z −1   ≤ 2 . Then any policy  p(t)  (almost 
surely) becomes perfectly simple at some finite random time  τ ≥ t , and remains 
perfectly simple thereafter.

Hereafter, our analysis will focus on the case where both parties are sufficiently 
zealous   ( z +1   > 2 and  z −1   > 2)  .

Outside the basin    , how does policy complexity evolve? In particular, does pol-
icy always move into the basin and remain perfectly simple forever? Or, conversely, 
does complexity increase unboundedly?

Propositions 1a and 1b tell us that outside , each Party  i  adds rules toward his 
ideal, and focuses on reducing complexity when at his ideal. This leads, in equi-
librium, to the following laws of motion for position and complexity. For regular  
p(t) ∉  , position  p  moves towards (and stops at)   p  i  ∗   while Party  i  is in control:

(9a)    d __ 
dt
   p(t) = γ ·  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
1

  
: p(t) ∈  [ p  −1  ∗   ,  p  +1  ∗  )   and  i(t) = +1

      − 1  : p(t) ∈  (  p  −1  ∗   ,  p  +1  ∗  ]    and  i(t)  = − 1      
0

  
: p(t) =  p  i(t)  ∗  

   . 

Whereas, complexity  ǁ p ǁ  decreases when position is at either ideal, and increases 
when position is between ideals;13 see Figure 4:

(9b)    d __ 
dt
   ǁ p(t)ǁ = γ ·  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
1

  
: p(t) ∈  ( p  −1  ∗  ,  p  +1  ∗  )   or p(t) =  p  −i(t)  ∗  

      
−   ǁ p(t)ǁ − | p(t)|  ___________  ǁ p(t)ǁ + | p(t)|  

  
: p(t) =  p  i(t)  ∗  

   . 

12 As we will see shortly, this statement is somewhat imprecise. Depending on parameter values, the basin of 
attraction for the set of perfectly simple policies is either    or the larger set of all regular policies. 

13 The exception to this rule is the case where Party  i  is in control and policy is at  − i ’s ideal:  p =  p  −i  ∗    , in which 
case complexity increases (   d __ 

dt
   ǁ p ǁ  = 1 ). But this case may essentially be ignored because policy spends zero time 

in this region of the state space: if Party  i  takes control at  − i ’s ideal   p  −i  ∗    outside    , he adds  j -rules and instanta-
neously moves policy away from   p  −i  ∗   . 
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This short-run relationship between complexity and position, as expressed by 
(9b), extends naturally into the long-run. To state the long-run result precisely, first 
note that outside the basin   , the long-run behavior of position  p  can be described 
in terms of its steady-state distribution.

LEMMA 1: Let  q(t) ∈  [ p  −1  ∗   ,  p  +1  ∗  ]   be the random process that obeys, for all  t ≥ 0  , 
the law of motion specified by (9a). Then the Markov process   (q(t), i(t))   is uniquely 
ergodic, i.e., has a unique invariant (steady-state) distribution.

Let  F( · )  be the steady-state marginal distribution of  q(t)  from Lemma 1. Define

  μ =  ∫  [ p  −1  ∗  ,  p  +1  ∗  ]   
 
    v(q) dF(q)  where  v(q) ≡  { 

1
  

:  p  −1  ∗   < q <  p  +1  ∗  
    

− 1
  

: q =  p  +1  ∗    or   p  −1  ∗  
   . 

We may interpret  μ  as the long-run average drift of complexity  ǁ p ǁ  outside the 
basin    (given the normalization  γ = 1 ). Alternatively, and equivalently,  − μ  rep-
resents the long-run average frequency of ideal positions: it captures how much time  
p  spends at ideals instead of between ideals. Our next result builds on this equiva-
lence and points out that kludge is possible if and only if ideal positions are achieved 
infrequently, so that complexity drifts upward in the long-run.14

PROPOSITION 3: Suppose that both parties are sufficiently zealous   ( z +1   > 2 and   
z −1   > 2)  , and that the starting policy  p(0)  is regular and not in the basin :

 (i) If  μ > 0  , then  K = 1  and policy (almost surely) becomes kludged or per-
fectly simple.

14 One might wonder whether our interpretation of  μ  as the long-run average drift of complexity is inaccurate, 

given that the rate at which complexity  ǁ p ǁ  decreases at ideals,   |  d __ 
dt
   ǁ p(t)ǁ|  =   ǁ p ǁ  − |p| ______ ǁ p ǁ  + |p|   , is smaller than the rate at 

which complexity increases between ideals,   |  d __ 
dt
   ǁ p(t)ǁ|  = 1 . However, this difference vanishes at the high-com-

plexity limit:    ǁ p ǁ  − |p| ______ ǁ p ǁ  + |p|   → 1  as  ǁ p ǁ  → ∞ . Indeed, it turns out that the long-run statistics that we calculate are 

determined by the dynamics of policy at this high-complexity limit. Our interpretation of  μ  as the drift of complex-
ity reflects this insight. 

p
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Figure 4. Increasing Complexity Outside the Basin
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 (ii) If  μ < 0  , then  K = 0  and policy (almost surely) becomes perfectly simple.

Proposition 3 is a limited result in some respects. It does not fully characterize 
the probability  κ  that kludge occurs, and solves instead for the less-informative 
binary statistic  K . This limitation arises because the policy process   (p(t), i(t))   is 
non-ergodic (i.e., path-dependent), so that long-run distributional outcomes such as  
κ  are difficult to directly characterize.

In other respects, Proposition 3 is quite powerful. It links  K  to the long-run prop-
erties of the (modified) position process   (q(t), i(t))  , which is ergodic and permits 
a closed-form solution for the long-run distribution—derived in Lemma B.1b in 
online Appendix B. This enables a rich set of sharp comparative statics results about 
how  K  changes with model primitives, which we explore in Section IIC.

Let’s return to our discussion of path dependence. Proposition 2 showed that 
simple policies grow simpler over time. If  μ > 0  , then the (loose) converse holds 
as well: complex policies tend to grow more complex. This is illustrated crudely by 
Proposition 3, which shows that any policy outside the basin  of relatively simple 
policies may become kludged. The following result is a cleaner formulation of the 
same basic points. Even outside the basin, if the initial policy has low (high) com-
plexity, then the probability that policy eventually becomes kludged is low (high).

PROPOSITION 4: Fix a starting policy that is neutral and not perfectly simple:  
p(0) = 0  and  ǁ p (0) ǁ > 0 . Suppose that   z +1   > 2  and   z −1   > 2  , and that  μ > 0  , 
so that  K = 1 . Then,

  κ → 0  as  ǁ p (0) ǁ → 0,

 κ → 1  as  ǁ p (0) ǁ → ∞. 

Such dependence on initial conditions has policy implications. Because com-
plexity begets further complexity, one-time interventions to reduce complexity may 
produce long-run gains that are underestimated in static analyses. As a concrete 
example, a simplification of the tax code obviously reduces the costs of tax com-
pliance, and has an additional potential benefit: it may potentially prevent the tax 
code from growing ever more complex, or at least may slow the growth of said 
complexity.

C. Comparative Statics: The Politics of Kludges

For convenient exposition, relabel some of the model’s primitives as follows. 
Define

  volatility: λ =  √ 
_____

  λ +1    λ −1     ,

 distance:  Δ  p  ∗   =  p  +1  ∗   −  p  −1  ∗  ,

 imbalance: Λ =  max  
 
     {   λ +1   ___  λ −1  

   ,    λ −1   ___  λ +1  
  } , 
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where  λ  , the (geometric) average of control change arrival rates, captures the vola-
tility of political control; where   Δ  p  ∗   , the difference between parties’ ideals, captures 
the ideological distance between parties; and where  Λ  captures the degree of power 
imbalance between parties. Further, label the following increasing function of  Λ  as

   Λ ̃   =  

⎧

 
⎪
 ⎨ 

⎪
 

⎩

 

1

  

if Λ = 1

      
log   3 −  Λ   −1  _____ 

3 − Λ  
 _______ 

 √ 
__

 Λ   −  √ 
___

  Λ   −1   
    if 1 < Λ < 3    

+∞

  

if Λ ≥ 3

   . 

Propositions 5a and 5b encapsulate our comparative statics for complexity. We 
first state the results, then discuss the intuition.

PROPOSITION 5a: Suppose that both parties are sufficiently zealous   ( z +1   > 2 and   
z −1   > 2)  , and that the starting policy  p(0)  is regular and not in the basin   :

 (i) If   Δ  p  ∗  λ γ   −1  >  Λ ̃    , then  K = 1  and policy (almost surely) becomes kludged 
or perfectly simple.

 (ii) If   Δ  p  ∗  λ γ   −1  <  Λ ̃   , then  K = 0  and policy (almost surely) becomes perfectly 
simple.

PROPOSITION 5b: Suppose that the conditions of Proposition 5a. 1 are satisfied, 
so that  K = 1 . Then  κ  is increasing in   z +1    and   z −1   .

Proposition 5a follows closely from Proposition 3. It specifies conditions under 
which the long-run frequency of ideal positions is low (or high) enough that (outside  
 ) complexity drifts upward (or downward), i.e.,  μ > 0  (or  μ < 0 ). This equiv-
alence helps us to understand the comparative statics specified in Proposition 5a: 
(i) As imbalance  Λ  in political power becomes large, the more powerful party attains 
his ideal position more frequently (Figure 5). So policy drifts downward, and the 
complexity statistic  K  decreases; (ii) As legislative friction   γ   −1   increases, each party 
makes more time to reach his ideal. Thus ideal positions are attained less frequently, 
and  K  increases; (iii) As political volatility  λ  increases, each party spends less time 
in control. So ideal positions are attained less frequently, and  K  increases;15 and (iv) 
As ideological distance   Δ  p  ∗   increases, each party has more distance to cover to reach 
his ideal. Ideal positions are attained less frequently, and  K  increases.

Proposition 5b states that as parties becomes more zealous, kludge becomes more 
likely. The logic of this result differs from those of Proposition 5a. A change in 
zealousness has no effect on the frequency of ideal positions and thus no effect 
on the drift of complexity. Instead, an increase in zealousness shrinks the basin . 
Consequently, policy becomes less likely to enter the basin and get trapped; rather, 
policy is more likely to “escape” and become kludged.

15 In fact, an increase in volatility  Λ  is equivalent to an increase in friction   γ   −1   (and a corresponding time dila-
tion); both changes result in less policy change for each control interval. 
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A second set of comparative statics relate to policy polarization; that is, the long-
run extent to which policy deviates from a “neutral” position. To measure policy 
polarization, let’s adopt the normalization   p  +1  ∗   = −  p  −1  ∗   , so that the midpoint  p = 0  
between ideals is neutral. Let  H  be the steady-state marginal distribution of   |p(t)|  ∈  
[0,  p  +1  ∗  ]   under the law of motion (9a). In fact,  H  is a natural long-run measure of 
policy polarization: recall that policy eventually becomes either kludged or perfectly 
simple, and that  p(t)  obeys the law of motion (9a) in either case. Accordingly, we 
say that polarization increases if  H( · )  increases in the sense of first-order stochastic 
dominance.

PROPOSITION 6: Suppose that   p  +1  ∗   = −  p  −1  ∗   . Then, policy polarization is:

 (i) increasing in imbalance  Λ ,

 (ii) constant in zealousness   z +1    and   z −1   .

Further fixing  Λ = 1  ( political power is balanced), policy polarization is:

 (i) decreasing in friction   γ   −1  ,

 (ii) decreasing in volatility  λ ,

 (iii) increasing in ideological distance   Δ  p  ∗  = 2 p  +1  ∗   .

Our comparative statics for complexity and our comparative statics for polariza-
tion are closely related. To start, consider those primitives corresponding to tech-
nological aspects of political and legislative processes ( Λ ,   γ   −1  ,  λ ). As recorded 
in Table 1, any change to one of these primitives that decreases polarization also 
increases complexity.

Because our measure of deviation   | p |   is maximized at either ideal, an increase 
in polarization corresponds (informally speaking) to an increase in  − μ , the fraction 
of time spent at ideal positions relative to between-ideal positions—and thus in a 
decrease in long-run complexity, as measured by  K . That is, holding the ideological 
distance   Δ  p  ∗   fixed, polarization reduces complexity.

p

|| p ||

p+1
*

p−1
*

Figure 5. Large Power Differential Leads to Less Kludge
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The comparative static effects of changes to political preferences (  Δ  p  ∗  ,  z +1  ,  z −1   )  
differ from those of changes to political processes: 

 (i) A decrease in ideological distance   Δ  p  ∗   reduces both polarization and com-
plexity. Such a change, by reducing the time taken to travel between ideals, 
ensures that policy spends more time at than between ideals, and thus lessens 
complexity. But a decrease in   Δ  p  ∗   also forces policy to move within a nar-
rower range of positions, and thus mechanically decreases polarization. 

 (ii) A decrease in zealousness   z +1  ,  z −1   , while decreasing complexity (Proposition 
5b), has no effect on polarization. After all, changes in zealousness preserve 
the law of motion (9a) and thus also the long-run distribution of position  p .

Policy Implications.—Our comparative statics provide some prescriptions for the 
design of political institutions. A patient planner who seeks to reduce long-run com-
plexity should remove legislative impediments to rulemaking such as supermajority 
rules and vetoes (i.e., increase  γ ). She should reduce political volatility, perhaps 
by increasing the length of election cycles (i.e., reduce  λ ). Perhaps controversially, 
rather than balancing power between political parties, she should instead design 
political institutions that favor one party over others (i.e., increase  Λ ); stated crudely, 
she should support autocracies over democracies. However, our model suggests that 
such changes to the political process may not be costless, even in the long run: 
decreasing complexity in this fashion may come with an increase in polarization.

On the other hand, a planner can avoid the complexity-polarization trade-off by 
manipulating political preferences. We prefer to think of such preference manipula-
tion in terms of cultural change: by fostering a moderate political culture and curb-
ing the extremist tendencies of political parties (reducing   Δ  p  ∗  ), a polity may reduce 
both complexity and polarization in policy.

III. Strategic Extremism

This section considers strategic behavior by non-myopic parties. We will show 
that ideologically zealous (high   z i   ) parties may engage in strategic extremism: 
i.e., move toward positions that are more extreme than their ideals. Such strategic 
extremism may increase policy complexity in the long run.

Loosely speaking, we consider the limit where both parties are infinitely zealous, 
but nonetheless care infinitesimally about complexity. This simplification  renders 

Table 1—Comparative Statics for Long-Run Outcomes

Parameter Symbol Complexity Polarization

Institutions

Volatility  λ ↗ ↘
Friction   γ   −1   ↗ ↘

Imbalance  Λ  ↘ ↗

Preferences
Distance   Δ  p  ∗   ↗ ↗

Zealousness   z +1  ,  z −1    ↗  → 
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the problem particularly tractable by reducing the associated two-dimensional 
optimal control problem (over  ǁ p ǁ  and  p ) to a one-dimensional problem (over  p ).  
Importantly, as we will argue, this simplification preserves the essential dynamic 
forces in our model, and thus allows us to cleanly highlight the impact of strategic 
interactions on long-run outcomes.

Start by introducing purely positional preferences:   u i   (p(t))  = − |  p  i  ∗  − p(t)|  , so 
Party  i  maximizes

  E [− ∫ 
0
  
∞

   |  p  i  ∗  − p(t)|   e   − r i  t  dt] . 

We restrict attention to strategies where each Party  i  has a favored position   p  i  ∗∗   called 
his target and—subject to the flow constraint (4) and entanglement constraint (5)—
moves toward it as quickly as possible:

(10)    d __ 
dt
   p(t) = γ ·  

⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
1

  
: p(t) <  p  i  ∗∗ 

   − 1  : p(t) >  p  i  ∗∗    
0

  
: p(t) =  p  i  ∗∗ 

  . 

Note that (10) does not specify how complexity evolves, and thus does not uniquely 
define a strategy. For example, if   p  i  ∗∗  > 0  and  p(t)  contains only negative rules, 
then (10) may be satisfied either by adding positive rules or by deleting (negative) 
rules.

Let’s mechanically introduce an infinitesimal distaste for complexity. Suppose 
that each party minimizes    d __ 

dt
   ǁ p ǁ =  α +   +  α −   − δ  given the constraint (10). With 

this additional assumption, the strategy is uniquely defined. The strategy adds com-
plexity everywhere—except at perfectly simple policies with opposite sign to   p  i  ∗∗   
and at   p  i  ∗∗   itself, where the strategy reduces complexity as quickly as possible. That 
is,

(11)    d __ 
dt

    ǁ p(t)ǁ = γ ·   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

1

  

: p ≠  p  i  
∗∗   and  | p | < ǁ p ǁ

     
sgn( p) sgn(  p  i  ∗∗  − p)

  
: p ≠  p  i  

∗∗   and  | p | = ǁ p ǁ
     −  

ǁ p ǁ − p
 ______ ǁ p ǁ + p  
  

: p =  p  i  
∗∗   and  | p | ≤ ǁ p ǁ     

0

  

: p =  p  i  
∗∗   and  | p | = ǁ p ǁ

   .

We say that a strategy is focused Markov if it obeys constraints (10) and (11). 
Figure 6 depicts focused strategies for Party  +1 . We show in online Appendix B 
that a (subgame perfect) equilibrium in focused Markov strategies always exists 
(Lemma B.6f). Hereafter, we restrict attention to these focused Markov equilibria.

Focused Markov strategies are very similar to optimal myopic strategies, espe-
cially for highly zealous parties. Indeed, returning to Figure 2, we see that a myopic 
strategy is identical to a focused Markov strategy which targets the party’s ideal  
  (  p  i  ∗∗  =  p  i  ∗ )   everywhere except the slivers of policies containing mostly “bad” rules   

(j( p/ǁpǁ) < 1 − 2/ z i   , where j = sgn( p −  p  i  
∗ ))  . These slivers narrow as zeal-

ousness   z i    increases; at the limit of infinite zealousness,   z i   → ∞ , the difference 
between the optimal myopic strategy and the focused Markov strategy vanishes. 
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There, focused Markov strategies generalize the myopic strategy by allowing the 
party to target a non-ideal position.

Consequently, with focused Markov strategies, the dynamics of complexity 
from the myopic setting of Section II are essentially preserved, with the twist that 
parties’ targets act as “endogenous ideals.” Complexity increases when policy lies 
between targets, and decreases when policy is at either target. Thus, a version of 
Proposition 5a holds in this setting, with targets taking the place of ideals: the aver-
age drift  μ  of complexity—and thus the long-run complexity statistic  K —increases 
with the distance between players’ targets, denoted as

   Δ  p  ∗∗  =  |  p  +1  ∗∗   −  p  −1  ∗∗   | . 

PROPOSITION 7: Suppose that both parties play focused Markov strategies, and 
that the starting policy is not perfectly simple   (| p(0) | < ǁ p (0) ǁ)  :

 (i) If   Δ  p  ∗∗ λ > γ Λ ̃   , then  K = 1 .

 (ii) If   Δ  p  ∗∗ λ < γ Λ ̃   , then  K = 0 .

Given that target locations affect long-run complexity, we seek to understand how 
strategic considerations affect the parties’ equilibrium target choices. Myopic play 
serves as a benchmark: strategic considerations are absent there, and parties choose 
their ideals as targets, i.e.,   Δ  p  ∗∗  =  Δ  p  ∗  . (See Figure 6 panel A.)

We say that Party  i  engages in strategic extremism if he chooses a target that is 
more extreme than his ideal: that is, if his ideal   p  i  ∗   lies between his target and his 
opponent’s target.

PROPOSITION 8: In any focused Markov equilibrium, both parties always engage 
in (weak) strategic extremism:   p  +1  ∗∗   ≥  p  +1  ∗    and   p  −1  ∗∗   ≤  p  −1  ∗   . (See Figure 6 panel B.)

p

p+ 1 = p+ 1

p

|| p || || p ||

p+1
*

p−1
*

** * p+ 1 > p+ 1** *

p+1
*

p−1
*

Panel A. Myopic strategy: Panel B. Strategic extremism:

00

Figure 6. Focused Strategies for Party +1
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Combined, Propositions 7 and 8 deliver the main lesson of this section. 
Forward-looking parties take extreme positions, pushing their targets further apart 
than myopic parties would:

   p  −1  ∗∗   ≤  p  −1  ∗    < 0 <  p  +1  ∗   ≤  p  +1  ∗∗  ,

so

  Δ  p  ∗∗  ≥  Δ  p  ∗ . 

This in turn increases (weakly, and sometimes strictly) the average drift  μ  of com-
plexity, and correspondingly the long-run complexity statistic  K . To summarize: 
strategic behavior takes the form of strategic extremism, which increases long-run 
policy complexity.

To understand the logic of strategic extremism, consider the trade-off that Party  
+1  faces between targeting his ideal position   p  +1  ∗    versus a more extreme position   
p  +1  ∗∗   >  p  +1  ∗   . Intuitively, an extreme target “shifts the goalposts” upward. This ini-
tial upward shift puts policy position further from Party  +1 ’s ideal   p  +1  ∗    in the short 
run. But, after Party  − 1  takes control and moves policy below   p  +1  ∗    , the initial shift 
becomes advantageous for  +1  because policy is now closer to   p  +1  ∗    than it would 
have been under the counterfactual where no initial shift occurred. This advantage 
is maintained even after subsequent control changes, at least until policy reaches the 
other target   p  −1  ∗∗    or moves back above   p  +1  ∗   . Strategic extremism is optimal if the later 
benefits outweigh the earlier costs.16

Because strategic extremism entails short-run costs and medium-run benefits, 
it arises only if players are sufficiently patient. (Indeed, we already know from 
Section II that myopic parties do not engage in strategic extremism.) The following 
proposition presents a version of this intuition. Given targets   p  +1  ∗∗    and   p  −1  ∗∗    , define a 
binary indicator for strategic extremism:

  ϕ =  { 
1 if  Δ  p  ∗∗  >  Δ  p  ∗     
0 if  Δ  p  ∗∗  =  Δ  p  ∗  

  . 

PROPOSITION 9: Fix   p  +1  ∗   ,   p  −1  ∗   , and   λ +1   ≠  λ −1   , so that parties have unequal 
durations. Restricting attention to focused Markov equilibria, there exists   _ γ   > 0  
such that the following hold if friction is high   (γ <  _ γ  )  :

 (i) There is a unique pair of equilibrium targets,   ( p  +1  ∗∗  ,  p  −1  ∗∗  )  .

 (ii) ϕ is weakly decreasing in the parties’ discount rates   r +1    and   r −1   .

16 Under stronger assumptions, we may also quantify the extent of strategic extremism by each party,   Δ  i  ∗∗   
=  |  p  i  ∗∗  −  p  i  ∗  |  . For example, in online Appendix B (Proposition B.1), we calculate   Δ  i  ∗∗   at the asymptotic limit 
where   Δ  p  ∗   and   γ   −1   are large. We show that a more vulnerable party (high   λ i   ) engages in more strategic extremism  
(high   Δ  i  ∗∗  ). 
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 (iii) For sufficiently small discount rates, strategic extremism occurs: ϕ  = 1 .

So, given that strategic extremism occurs only if players are sufficiently patient, 
kludge may occur with patient players despite being impossible under myopic 
 players. From the perspective of a planner who dislikes complexity, patience is not 
necessarily a virtue.

Reducing Complexity by Trigger Strategies.—We have shown that strategic 
extremism emerges in focused Markov equilibria, which rule out the use of punish-
ment schemes to enforce cooperation between parties. For an different perspective, 
we now describe a class of trigger-strategy equilibria where patient parties cooper-
ate to reduce complexity and avoid strategic extremism.

A focused trigger-strategy equilibrium is characterized by a common target posi-
tion    p ̃     ∗∗   and a pair of punishment target positions    p ̂    −1  ∗∗    and    p ̂    +1  ∗∗   . On the equilibrium 
path, both parties focus on the common target    p ̃     ∗∗  . If either player deviates, each 
party changes focus to his punishment target    p ̂    i  ∗∗  . In other words: each Party  i  always 
obeys constraints (10) and (11), but changes targets from   p  i  ∗∗  =   p ̃     ∗∗   to   p  i  ∗∗  =   p ̂    i  ∗∗   
immediately following any deviation.

It is easy to see that regardless of the initial policy  p(0) , a focused trigger-strategy 
equilibrium achieves the common target position    p ̃     ∗∗   in finite time and stays there 
forever. Once the common target is achieved, complexity  ǁ p ǁ  decreases mono-
tonically and    lim t→∞    ǁ p(t)ǁ =    p ̃     ∗∗  , i.e., policy becomes asymptotically perfectly 
simple.17

The following proposition states that given sufficiently patient parties, and given 
conditions under which focused Markov equilibria exhibit strategic extremism, there 
exist focused trigger-strategy equilibria that enforce regular positions, i.e., positions 
that lie between the parties’ ideals. Intuitively, cooperation can be achieved if both 
parties “compromise” on a regular position as the common target, then punish non-
cooperation by reverting to (mutually harmful) strategic extremism.

PROPOSITION 10: Suppose   λ +1   ≠  λ −1    and  γ <  _ γ    , as in Proposition 9. Suppose 
both parties have common discount rate  r . For some    r _   > 0  and for all  r ≤   r _    , 
there exists a focused trigger-strategy equilibrium where (i) the common target is 
regular,    p ̃     ∗∗  ∈  [ p  −1  ∗   ,  p  +1  ∗  ]  ; and (ii) the punishment targets exhibit strategic extrem-
ism,    p ̂    −1  ∗∗   ≤  p  −1  ∗    and    p ̂    +1  ∗∗   ≥  p  +1  ∗    (with strict inequality for at least one punishment 
target).

Taken together, Propositions 9 and 10 suggest that patience may be a double-edged 
sword. Whether complexity increases or decreases with patience may depend on 

17 If the initial policy  p(0)  is perfectly simple, then policy remains perfectly simple forever. Otherwise, 
policy never becomes perfectly simple because complexity reduction slows asymptotically to zero,  

   d __ 
dt

    ǁp(t)ǁ =  −  
ǁ p ǁ −   p ̃     ∗∗ 

 ________ ǁ p ǁ +   p ̃     ∗∗ 
    → 0 , while policy stays at the common target position  p =   p ̃     ∗∗  . However, a straightfor-

ward modification to the focused trigger-strategy equilibrium allows policy to become perfectly simple in finite 
time; see the discussion following Proposition 10’s proof in online Appendix B, and the accompanying Figure B.1. 
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whether patient parties can successfully build a (self-enforcing) collaborative 
relationship.

IV. Concluding Remarks

Throughout this paper, we have emphasized the applications of our model to 
public policy. However, we view our model as also being relevant to other settings 
in which the design of complicated contracts or policies involves political or ideo-
logical disagreement; for example, in the politics of organizational design, or in 
the decentralized development of open-source software. In particular, the insights 
we derive in the model can be straightforwardly reinterpreted for an organizational 
context. For example, our results on long-run kludge suggest that political conflict 
between different factions within an organization may give rise to persistently inef-
ficient bureaucratic routines and procedures within the organization.

In our model, the structure and density of entanglement—as captured by the entan-
glement constraint—is specified exogenously. This captures crudely the premise 
that entanglements between elements of complicated systems are difficult to antic-
ipate, and arise inevitably during the design process.18 A more nuanced approach 
would be to partially endogenize entanglement; for example, by allowing parties to 
reduce or increase the entanglement of new rules from a “baseline” level, perhaps at 
a cost. Such a setting may produce additional insights. For example, policymakers 
may deliberately enact highly-entangled rules, so as to obstruct their rivals from 
undoing those rules in the future.

Political power fluctuates exogenously in our model: in particular, the rates at 
which random control transitions occur are independent of past and present policy 
positions. This simplification allows us to cleanly highlight the key forces that ani-
mate policy complexity.19 Future work may consider richer settings where equilib-
rium policy positions may affect the present and future allocation of political power.

Appendix A: The Entanglement Constraint

This appendix presents two distinct microfoundations for the entanglement con-
straint (5). The second formulation (Part 2) allows us to parametrize the degree of 
entangledness, and derive comparative statics.

Part 1: Linear Network.—Here, the policy is a set of rules endowed with 
a total order  ≻ . We say that  π  depends on  π′  if  π ≻ π′ . We start by  describing 
the  policymaking technology in a discrete setting where each rule has small 
but positive mass ϵ, and time proceeds in discrete intervals of length  ϵ/γ .  
(We will interpret  γ  later.) This discrete setting serves to build  intuition for the role 
of dependencies in our analysis. We  subsequently focus on the limit  ϵ → 0  , where 

18 Readers who have written and debugged computer programs will surely sympathize with this premise. 
19 Indeed, this simplification is common to models of dynamic policymaking under political conflict; see, for 

example, Buisseret and Bernhardt (2017), Dziuda and Loeper (2016), and Chen and Eraslan (2017). 
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the policymaking technology simplifies to a  tractable continuous formulation.  
As before,   p j    denotes the mass of  j -rules in  p , and  ǁ p ǁ =  p +   +  p −   .

A new rule  π  added at time  t  is uniformly randomly allocated a position in the 
order  ≻ . That is, at the moment of addition,  π  is equiprobably  k th in the ordering for 
all  k ∈ {1, 2, …, | p(t)|} , where  |p(t)|  is the number of rules in  p(t)  (including  π ).  
Ordering is pairwise persistent: if  π ≻ π′  at time  t  , then  π ≻ π′  for all future times  
τ  that  π, π′ ∈ p(τ) . For simplicity of exposition, consider a single party who is 
always in control. At the start of each interval, the policymaker may choose any of 
the following actions, which is then realized at the end of the interval:

 (i) Add a new  j -rule in either direction  j ∈ {+, −} .

 (ii) Delete the  ≻ -maximal rule.

At time  t  , the party observes the direction of each rule in  p(t)  and the history of all 
added and deleted rules up until time  t  , but does not observe the ordering between 
rules. So, if he chooses “delete” at the start of a time interval, then he observes 
which rule was  ≻ -maximal (and thus was deleted) only at the end of the interval.

In general, one might expect the party’s beliefs about the dependency ordering  ≻  
to evolve in a complicated fashion. Conveniently, our technical assumptions allow 
us to abstract from the details of (beliefs about) the ordering.

REMARK A.1: At any time- t  history, from the policymaker’s perspective, every per-
mutation of the dependency ordering over  p(t)  is equally likely.

So, rules are indistinguishable beyond their direction: all positive rules look alike, 
and all negative rules look alike. Consequently, the policymaker’s beliefs are sum-
marized by the masses  (  p +  ,  p −  )  of positive and negative rules.

Now, we calculate how   p +    and   p −    change over a single time interval under addi-
tion and deletion. Let  Δ  p j    denote the change in   p j    over a single time interval.

If the party adds a  j -rule, then (remembering that  Δt = ϵ/γ )

  Δ  p j   = γ Δt  and  Δ  p −j   = 0. 

If the party deletes the  ≻ -maximal rule, it is equally likely to be any of the existing 
rules in  p(t) . So, deletion preserves (in expectation) the ratio of positive to negative 
rules in the policy:

  E [Δ  p j  ]  = − γ   
 p j   ____ ǁ p ǁ   Δt for each j ∈ { +, − }. 

More generally, if the party mixes over positive rule addition, negative rule addition, 
deletion, and doing nothing, then he can achieve (in expectation) any convex com-
bination of addition and deletion outcomes:

(A1a)  E [Δ  p j  ]  =  ( α j   −   
 p j   ____ ǁ p ǁ   δ)  Δt  for each j ∈ {+, −},  



VOL. 10 NO. 4 155KAWAI ET AL.: POLITICAL KLUDGES

for any

(A1b)   α +   ≥ 0,  α −   ≥ 0, δ ≥ 0 such that   α +   +  α −   + δ ≤ γ. 

Now, focus on the limit  ϵ → 0 , so that each rule becomes infinitesimally small 
and time is continuous. Here, the laws of motion (A1a)–(A1b) can be expressed 
in differential form. The party chooses addition and deletion rates   α +   (t) ≥ 0,  
α −   (t) ≥ 0, δ(t) ≥ 0 , which determine the velocity of   ( p +  ,  p −  )  :

(A2a)    d __ 
dt

    p j   (t) =  α j   (t) −   
 p j   (t) ______ ǁ p(t) ǁ   δ(t)  for each j ∈ {+, −}, 

subject to a flow constraint

(A2b)   α +   (t) +  α −   (t) + δ(t) ≤ γ. 

Together, equations (A2a) and (A2b) are equivalent to the law of motion (3) and 
entanglement constraint (5).

Part 2: Random Network. —We start with an informal description of the model.
A policy is a continuum of infinitesimal rules. We adopt the convenient exposi-

tional convention that each rule has (infinitesimal) mass ϵ. Rules are linked to form 
an undirected network. Whenever a new rule  π  is created, it randomly forms a link 
to each existing rule with (infinitesimal) probability  ρϵ . So, each new rule  π  forms  
ρ  links (in expectation) per unit mass of existing rules. We interpret  ρ  as the degree 
of entangledness. Once formed, links between pairs of rule persist until one or both 
rules in the pair are deleted.

As in Part 1 of this Appendix, consider a single party who is always in control. 
The party can add rules in either direction, but cannot precisely target a given rule 
for deletion. Specifically, if the party targets a rule  π  to be deleted, the direct neigh-
bors of  π  will also be simultaneously deleted. As before, the maximum rate of addi-
tion and deletion (of all rules, including the neighbors of rules targeted for deletion) 
is mass  γ  per unit time.

When formalizing this description, we distinguish between rules added at differ-
ent times when describing the policy. Say that a rule has vintage- τ  if it was added 
at time  τ . Define   p j   (t, τ)  to be the “quantity” of vintage- τ   j -rules that remain at time  
t ≥ τ . Specify the law of motion of   p j   (t, τ)  to be

(A3)   p j   (t, τ) =  α j   (τ)  −  ∫ 
τ
  
t
    δ j   ( t ̃  , τ) d t ̃  , 

where   α j   (τ)   is the time- τ  addition rate for  j -rules and   δ j   ( t ̃  , τ)  is the time-  t ̃    deletion 
rate for  j -rules of vintage  τ . That is, the time- t  quantity of vintage- τ  rules equals the 
time- τ  addition rate, less the total quantity of vintage- τ  rules deleted up until time  t .

Let    δ ̂   +   (t, τ)  and    δ ̂   −   (t, τ)  be the time- t  rate at which the party targets vintage- τ  
rules for deletion. Let the network structure be characterized by  ρ( j, τ,  j ̃  ,  τ ̃  ) , which 
represents the density of connections between  j -rules of vintage- τ  and   j ̃   -rules of 
vintage-  τ ̃   . To capture the idea that immediate neighbors of deleted rules must also 
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be deleted, we specify that the vintage- τ  deletion rate accounts both for directly tar-
geted rules, and for neighbors of targeted rules from other vintages:

   δ j  (t, τ) =   δ ˆ   j  (t, τ) +  p j  (t, τ)  ∑ 
 j ̃  
  
 
    ∫ 

0
  
t
   ρ( j, τ,  j ̃  ,  τ ̃  )   δ ˆ    j ̃     (t,  τ ̃  ) d τ ̃   .

Define the mass of  j -rules at time  t  to be the total quantity of rules, integrated over 
all vintages:   p j   (t) =  ∫ 0  

t    p j   (t, τ) dτ . Applying (A3), we get

   p j   (t) =  ∫ 
0
  
t
    α j   (τ)  dτ −  ∫ 

0
  
t
    δ j   ( t ̃  ) d t ̃  ,  where   δ j   (t) =  ∫ 

0
  
t
    δ j   (t, τ) dτ. 

In differential form, this replicates (3) from Section I:

    d __ 
dt
    p j   (t) =  α j   (t) −  δ j   (t). 

Naturally, we interpret   δ j   (t)  to be the rate at which  j -rules are being deleted.
We specify that at each time  t  , the party chooses addition rates   α +   (t)  and   α −   (t) , 

and vintage-specific deletion rates    δ ̂   +   (t, τ)  and    δ ̂   −   (t, τ) , subject to the familiar flow 
constraint (4) on the overall rate of addition and deletion:

(A4)   α +   (t) +  α −   (t) +  δ +   (t) +  δ −   (t) ≤ γ. 

Our key simplifying assumption is that the density of links across vintages and 
directions of rules is completely homogenous:  ρ(τ,  τ ̃  , j,  j ̃  ) ≡ ρ > 0 . In that case, 
some algebra reveals that the deletion rate is

(A5)   δ j   (t) =   δ ̂   j   (t) + ρ  p j   (t) (  δ ̂   +   (t) +   δ ̂   −   (t)) ,  where   δ ̂   j   (t) =  ∫ 
0
  
t
     δ ̂   j   (t, τ) dτ. 

Thus, the deletion rates   δ +   (t)  and   δ −   (t)  are determined entirely by the targeted dele-
tion rates    δ ̂   +   (t)  and    δ ̂   −   (t) . In other words, it does not matter which rules to target; 
the only relevant decision is how many rules to delete.

Further, inspection of (A5) indicates that the party can, by appropriately choosing 
deletion rates    δ ̂   +   (t)  and    δ ̂   −   (t) , achieve any combination of deletion rates   δ +   (t)  and   
δ −   (t)  satisfying

(A6)     δ +   (t) ____  δ −   (t)   ∈  [  1 + ρ  p +   (t) ________ ρ  p −   (t)  ,   ρ  p +   (t) ________ 
1 + ρ  p −   (t)  ] . 

Accordingly, we may restate the laws of motion as follows:

At each time  t , the party chooses addition rates   α +   (t)  and   α −   (t)  and dele-
tion rates   δ +   (t)  and   δ −   (t) , subject to the flow constraint (A4) and the 
entanglement constraint (A6).

Notice that (A6) is a relaxed version of Section I’s entanglement constraint, (5). 
At the limit  ρ → ∞  , where the network density becomes large, (A6) tightens into 
(5).
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Our results from Section II continue to hold in this setting, even with finite entan-
gledness  ρ . As before, suppose that both parties are myopic. Define the basin    , as 
before, to be the set of regular policies where at least one party deletes rules. Here:

  =  {p  :   (  ρ  p +   _______ 
1 + ρ ǁ p ǁ   <   1 ___  z +1      or    ρ  p −   _______ 

1 + ρ ǁ p ǁ   >   1 ___  z −1    )    and   p ∈  [  p  −1  ∗  ,  p  +1  ∗  ] }  .

The basin  expands as entangledness  ρ  decreases. This is intuitive: as the entangle-
ment constraint loosens, the ability of each party to target rules for deletion improves, 
and thus deletion becomes optimal over a larger range of policies. Proposition 2 
continues to hold in this setting: any policy in    remains forever in   .

Outside the basin   , the laws of motion (9a) and (9b) continue to hold. 
Consequently, all of our results about kludge—Proposition 3, Propositions 4, 5a, 
5b, and 6—are preserved. Further, we may show that kludge increases with entan-
gledness  ρ .

PROPOSITION A.1: Suppose  K = 1 . Then  κ  is decreasing in  ρ .

The proof is almost identical to that of Proposition 5b, and thus is omitted. An 
increase in entangledness  ρ  shrinks the basin   . Consequently, policy becomes less 
likely to enter the basin and get trapped; rather, policy is more likely to “escape” and 
become kludged.
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