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1. INTRODUCTION

The literature on Bayesian persuasion has largely focused on the linear case, where the

state space is one-dimensional and posterior distributions over states are summarized by

their mean (e.g., Gentzkow and Kamenica 2016, Kolotilin et al. 2017, Kolotilin 2018, and

Dworczak and Martini 2019). The standard approach has been to analyze unrestricted per-

suasion, where the set of feasible signals is unrestricted. In reality, however, various con-

straints arise due to incentive, legal, or other practical considerations. Two such constraints

are that signals should be deterministic and monotone. For instance, the bank regulator may

be unable to use a stress test that credibly and varifiably randomizes scores or gives higher

scores to weaker banks (Goldstein and Leitner 2018).

These concerns motivate the study of monotone persuasion (e.g., Mensch 2021 and

Onuchic and Ray 2023) where all feasible signals are deterministic and monotone, so that

they partition the state space into convex sets (i.e., intervals and singletons).1 However,

these studies do not address the linear case.2 In the literature that deals with the linear

case, Dworczak and Martini (2019) delineate conditions under which optimal unrestricted

persuasion is monotone, so that standard results apply.3 It remains an open question what

optimal monotone signals look like when optimal unrestricted signals are nonmonotone.

We answer this question in the two leading cases that are most relevant in applications.

The first case is the simplest case where randomization is valuable: the state is discrete,

and the objective function is s-shaped (convex-concave). Here, it is known that the opti-

mal unrestricted signal is stochastic upper censorship that separates low states, pools high

1The Bayesian persuasion literature has considered other types of constraints whose effects differ substantially
from the monotonicity constraint. Ivanov (2021), Aybas and Turkel (2024), Hopenhayn and Saeedi (2024), and
Lyu et al. (2024) study persuasion under the constraint that a set of signal realizations is finite, whereas Doval and
Skreta (2024) study persuasion under a finite number of linear constraints.

2Mensch (2021) studies general nonlinear monotone persuasion and discusses a special subcase of the linear
case in Section 5.2 where the objective function is quadratic, and thus convex or concave, so full or no disclosure
is optimal. In contrast, Onuchic and Ray (2023) study specific nonlinear monotone persuasion, which overlaps
with the linear case only when the objective is linear, so all signals are optimal.

3Relatedly, Arieli et al. (2023) show that, if the state is continuous, it is without loss of optimality to restrict
attention to (possibly nonmonotone) deterministic signals or to (possibly stochastic) signals such that a higher state
induces a higher lottery over signal realizations with respect to first-order stochastic dominance. More generally,
Kolotilin and Zapechelnyuk (2025) show that, regardless of whether the state is discrete or continuous, it is
without loss of generality to restrict attention to (possibly stochastic) signals such that a higher state induces a
higher lottery over signal realizations with respect to the likelihood ratio order.
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states, and randomizes between separation and pooling at the cutoff state. We show that

any optimal monotone signal has the same upper censorship form but does not randomize

at the cutoff state.

The second case is the simplest case where nonmonotone pooling of states is valuable:

the state is continuous, and the objective function is m-shaped (concave-convex-concave).

If optimal unrestricted signals are nonmonotone, then they induce two signal realizations

that concavify the objective. We show that any optimal monotone signal in this case is either

no disclosure or a cutoff rule that reveals whether the state is below or above a cutoff.

Our main contribution is to develop a novel methodological approach to monotone per-

suasion. This approach is quite general and applies to our two leading cases. Our key step

narrows down the set of possible optimal monotone signals to a simple class by showing

that any monotone signal outside of this class is dominated by a signal in this class. In

contrast, existing approaches from the persuasion literature – such as concavification and

linear programming duality – do not apply because the monotone persuasion problem is

not a linear program.

To illustrate the relevance of our two cases, we use our results to obtain novel economic

insights in the media censorship model of Kolotilin et al. (2022), which features a govern-

ment, heterogeneous citizens, and media outlets. They assume that initially there is a con-

tinuum of media outlets and the distribution of citizens’ types is unimodal. For any initial

set of media outlets, we show that the government’s problem of media censorship reduces

to a monotone persuasion problem. Our first case corresponds to the case where there is

initially a finite number of media outlets and the distribution of citizens’ types is unimodal.

In this case, the government permits all sufficiently supportive outlets and censors all other

media outlets, which extends the result of Kolotilin et al. (2022) on the optimality of upper

censorship from the continuous case to the discrete one. Our second case corresponds to

the case where there is initially a continuum of media outlets and the distribution of citi-

zens’ types is bimodal (i.e., society is polarized). In this case, we obtain a novel result: the

government either censors all outlets or permits only one moderate outlet. In both cases,

the optimal media censorship policies are simple and intuitive. In contrast, implementing

optimal unrestricted signals would require complex and unrealistic forms of media control.
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2. MODEL

A state ω ∈ [0,1] is a random variable with a prior probability distribution function F .

A signal reveals information about the state. An objective V : [0,1] 󰀁→R is a twice contin-

uously differentiable function of the expected state m induced by a signal.

In many applications, the state is either continuous or discrete. The state is continuous if

F has a strictly positive density f on [0,1]. The state is discrete if the support of F , denoted

by supp(F ), is a finite subset of [0,1]. The discrete density is also denoted by f .

In an unrestricted persuasion problem, a signal can be arbitrarily correlated with the

state. By Blackwell’s informativeness theorem, there exists a signal that induces a proba-

bility distribution G of the expected state m iff the prior distribution F is a mean-preserving

spread of G (e.g., Kolotilin 2018). Thus, the unrestricted persuasion problem is to find an

optimal unrestricted signal that maximizes
󰁕 1
0 V (m)dG(m) over distributions G such that

F is a mean-preserving spread of G.

In a monotone persuasion problem, a signal is required to be monotone: it pools the states

into convex sets (i.e., intervals and singletons) and reveals which set contains the realized

state. Formally, a monotone signal is an increasing function µ : [0,1] 󰀁→ [0,1]. W.l.o.g.,

we identify each signal realization m with the expected state induced by this realization,

so m = E[ω|µ(ω) = m]. Thus, the monotone persuasion problem is to find an optimal

monotone signal that maximizes
󰁕 1
0 V (µ(ω))dF (ω) over monotone signals µ.

Kamenica and Gentzkow (2011) show that full disclosure (resp., no disclosure) is an

optimal unrestricted signal, and thus an optimal monotone signal, if the state is discrete

and the objective function is convex (resp., concave). Dworczak and Martini (2019) show

that an optimal unrestricted signal is monotone if the state is continuous and the objective

function is affine closed. In particular, V is affine closed if it has no m-shaped (concave-

convex-concave) region.

We study the two leading cases where an optimal unrestricted signal may be nonmono-

tone. In Section 3, the objective is s-shaped (convex-concave) but the state is discrete. In

Section 4, the state is continuous but the objective is m-shaped (concave-convex-concave).
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3. DISCRETE STATE AND S-SHAPED OBJECTIVE

In this section, the state is discrete and the objective is s-shaped. The objective function

V is s-shaped if there exists 0 < ωM < 1 such that V is strictly convex on [0,ωM ] and

strictly concave on [ωM ,1].

A signal is stochastic upper censorship if there exist ω∗ ∈ supp(F ) and q∗ ∈ [0,1] such

that states in [0,ω∗) are separated, states in (ω∗,1] are pooled, and state ω∗ is separated

with probability q∗ and pooled with probability 1− q∗. Let

m∗ =

ω∗(1− q∗)f(ω∗) +
󰁛

ω>ω∗
ωf(ω)

(1− q∗)f(ω∗) +
󰁛

ω>ω∗
f(ω)

be the expected state conditional on the pooling signal realization. A stochastic upper-

censorship signal with (ω∗, q∗) is deterministic upper censorship if q∗ ∈ {0,1}. This is the

monotone signal µ given by

µ(ω) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ω, ω ∈ [0,ω∗),

ω∗, ω = ω∗ and q∗ = 1,

m∗, ω = ω∗ and q∗ = 0,

m∗, ω ∈ (ω∗,1],

Alonso and Câmara (2016) and Kolotilin et al. (2022) show that there exist unique ω∗ ∈
supp(F ) and q∗ ∈ [0,1] satisfying

V (m∗) + V ′(m∗)(ω∗ −m∗)≥ V (ω∗), with equality if (ω∗, q∗) ∕= (0,0), (1)

such that the optimal unrestricted signal is stochastic upper censorship with (ω∗, q∗). Con-

dition (1) is the first-order necessary condition for optimality, which holds with equality at

interior (ω∗, q∗) and holds with inequality at boundary (ω∗, q∗) = (0,0).
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THEOREM 1: If the state is discrete and V is s-shaped, then any optimal monotone

signal is upper censorship. Moreover, if (ω∗, q∗) is given by (1), then any optimal monotone

signal is upper censorship with (ω∗,0) or (ω∗,1).

We prove Theorem 1 in two steps. The first step shows that any optimal monotone signal

is upper censorship. Intuitively, since an s-shaped V is convex for low states (which favours

their separation) and concave for high states (which favours their pooling),4 it is optimal

to separate low states and pool high states, as prescribed by upper censorship. There is a

simple linear-programming proof for the case of stochastic upper censorship (see Kolotilin

et al. 2022), but this proof cannot be extended to the case of deterministic upper censorship,

because the monotone persuasion problem is a discrete optimization problem when the

state is discrete. Instead, for each monotone signal that is not upper censorship, our proof

constructs a dominating monotone signal that is upper censorship. In particular, in the case

of three states ω1 < ω2 < ω3, our construction shows that pooling of states ω1 and ω2 and

separation of state ω3 is dominated by either full disclosure or no disclosure.

The second step shows that the optimal deterministic upper censorship cutoff coincides

with the optimal stochastic upper censorship cutoff. Intuitively, since V is s-shaped, the

value of stochastic upper censorship is quasiconcave in (ω∗, q∗) in the lexicographic order,

where (ω∗
2, q

∗
2) ≥ (ω∗

1, q
∗
1) iff ω∗

2 > ω∗
1 or ω∗

2 = ω∗
1 and q∗2 ≥ q∗1 . Thus, if the optimal un-

restricted signal is stochastic upper censorship with (ω∗, q∗), then any optimal monotone

signal is deterministic upper censorship with either (ω∗,0) or (ω∗,1).

Finally, we remark that the optimal deterministic signal may be nonmonotone, when the

state is discrete and the objective is s-shaped. For example, suppose that state ω takes only

three values 0, ε, and 1 with probabilities (1 − q)/2, q/2, and 1/2 where ε, q ∈ (0,1/2).

Suppose that V is such that the optimal unrestricted signal is stochastic upper censorship

that separates state 0 with probability q when state ω takes only two values 0 and 1 with

4To see that convexity (resp., concavity) of V favours separation (resp., pooling), notice that, in the case
with two states ω1 < ω2, separation (resp., pooling) yields V (ω1)f(ω1) + V (ω2)f(ω2) (resp., V (ω1f(ω1) +

ω2f(ω2))).
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equal probabilities. In this case, if ε is sufficiently small, the optimal deterministic signal

pools states 0 and 1 and separates state ε.5

4. CONTINUOUS STATE AND M-SHAPED OBJECTIVE

In this section, the state is continuous and the objective is m-shaped. The objective func-

tion V is m-shaped if there exist 0< ωL < ωR < 1 such that V is strictly concave on [0,ωL],

strictly convex on [ωL,ωR], and strictly concave on [ωR,1].

A monotone signal µ is interval disclosure with cutoffs 0≤ ω∗
L ≤ ω∗

R ≤ 1 if states in the

middle interval [ω∗
L,ω

∗
R] are separated and states in the left interval [0,ω∗

L) and in the right

interval (ω∗
R,1] are pooled, so

µ(ω) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

m∗
L, ω ∈ [0,ω∗

L),

ω, ω ∈ [ω∗
L,ω

∗
R],

m∗
R, ω ∈ (ω∗

R,1],

where

m∗
L = E

󰀅
ω|ω ∈ [0,ω∗

L]
󰀆

and m∗
R = E

󰀅
ω|ω ∈ [ω∗

R,1]
󰀆

are the expected states conditional on the pooling signal realizations. A monotone signal µ

is a cutoff rule with cutoff ω∗ if states in the intervals [0,ω∗) and (ω∗,1] are pooled. Finally,

a monotone signal µ is no disclosure if all states in [0,1] are pooled. Note that no disclosure

is a special case of a cutoff rule, which is, in turn, a special case of interval disclosure.

It is straightforward to obtain the first-order necessary conditions for optimality, which

are similar to conditions in Kolotilin (2018). If interval disclosure with interior cutoffs

0< ω∗
L < ω∗

R < 1 is optimal, then

V (m∗
L) + V ′(m∗

L)(ω
∗
L −m∗

L) = V (ω∗
L), (2)

V (m∗
R) + V ′(m∗

R)(ω
∗
R −m∗

R) = V (ω∗
R) (3)

5Intuitively, as ε→ 0, by continuity, the value of this signal converges to the value of optimal stochastic upper
censorship, while the value of any of the other 4 deterministic signals is bounded away from the value of optimal
stochastic upper censorship.
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If a cutoff rule with interior cutoff ω∗ ∈ (0,1) is optimal, then

V (m∗
L) + V ′(m∗

L)(ω
∗ −m∗

L) = V (m∗
R) + V ′(m∗

R)(ω
∗ −m∗

R), (4)

where m∗
L = E[ω|ω ∈ [0,ω∗]] and m∗

R = E[ω|ω ∈ [ω∗,1]]. Also, no disclosure is suboptimal

if there exists a cutoff rule with cutoff ω∗ ∈ (0,1) such that

V (m∗
L)F (ω∗) + V (m∗

R)(1− F (ω∗))> V (E[ω]). (5)

THEOREM 2: If the state is continuous and V is m-shaped, then any optimal monotone

signal is interval disclosure. Moreover:

1. If there exist ω∗
L,ω

∗
R ∈ (ωL,ωR) with ω∗

L < ω∗
R such that (2) and (3) hold, then the

optimal monotone signal is interval disclosure with cutoffs ω∗
L and ω∗

R. Also, m∗
L ∈

(0,ωL) and m∗
R ∈ (ωR,1).

2. Else if there exists ω∗ ∈ (0,1) such that (5) holds, then an optimal monotone signal is

a cutoff rule with some cutoff ω∗ ∈ (0,1) that satisfies (4) and (5). Also, m∗
L ∈ (0,ωL)

and m∗
R ∈ (ωR,1).

3. Else, an optimal monotone signal is no disclosure.

We prove Theorem 2 in two steps. The first step shows that any optimal monotone signal

is interval disclosure. Intuitively, since an m-shaped V is convex for middle states (which

favours their separation) and concave for extreme states (which favours their pooling), it is

optimal to separate middle states and pool extreme states, as prescribed by interval disclo-

sure. There is a simple linear programming characterization of optimal unrestricted signals

when V is m-shaped (see Kolotilin 2018), but all these signals may be nonmonotone. In

this case, the standard approaches from the persuasion literature no longer apply. Instead,

for each monotone signal that is not interval disclosure, our proof constructs a dominating

monotone signal that is interval disclosure.

The second step delineates conditions under which an optimal monotone signal takes

each of the three possible forms of interval disclosure: nondegenerate interval disclosure

(Figure 1a), a cutoff rule (Figures 1b and 1c), and no disclosure (Figure 1d).

If (2) and (3) hold (Figure 1a), or if (4) and (5) hold and V ′(m∗
L)≤ V ′(m∗

R) (Figure 1b),

then the optimal unrestricted signal is interval disclosure (see Kolotilin 2018). Otherwise
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0 ωL ωRmL
* mR

*ωR
*ωL

* 1
m

V

(a) Interval disclosure with cutoffs ω∗
L < ω∗

R

0 ωL ωRmL
* mR

*ω* 1
m

V

(b) Cutoff rule with cutoff ω∗

0 mL
* mR

*mL mRω* [ω] 1
m

V

A
BC

(c) Cutoff rule with cutoff ω∗
0 mL

* mR
*mL mRω* [ω] 1

m

V

A

B
C

(d) No disclosure

FIGURE 1.—Interval disclosure when V is m-shaped.

Note: Moving along Figures 1a → 1b → 1c → 1d, expected states m∗
L and m∗

R move away from each other, which means
that the prior distribution F puts increasingly more weight on left and right states (and less weight on middle states). In Figure 1a,
the tangents to V at m∗

L and m∗
R cross V at ω∗

L and ω∗
R. In Figures 1b, 1c, and 1d, the tangents to V at m∗

L and m∗
R intersect

at ω∗. In Figures 1c and 1d, points A, B, and C show the values of bipooling, a cutoff rule, and no disclosure.

(Figures 1c and 1d), each optimal unrestricted signal is nonmonotone. This nonmonotone

case arises iff the following condition holds (see Arieli et al. 2023).

CONDITION 1: There is a unique bitangent to V whose tangent points mL and mR

are such that 0 < mL < E[ω] < mR < 1 and there exists ω∗∗ ∈ (mL,1) with E[ω|ω ∈
[0,ω∗∗]] =mL and E[ω|ω ∈ [ω∗∗,1]]>mR.

Condition 1 says that a cutoff rule with cutoff ω∗∗ induces expected states m∗∗
L = mL

and m∗∗
R >mR, which intuitively means that the prior distribution F is sufficiently spread

out. Kleiner et al. (2021) and Arieli et al. (2023) show that, under Condition 1, each optimal
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unrestricted signal is bipooling in that it induces two expected states mL and mR that yield

the value coV (E[ω]), where coV (E[ω]) is the concavification of V at E[ω],

coV (E[ω]) = V (mL)
mR −E[ω]
mR −mL

+ V (mR)
E[ω]−mL

mR −mL
.

There exists deterministic bipooling, but then it is necessarily nonmotone. For example,

there exist ω∗∗
L ∈ (0,mL) and ω∗∗

R ∈ (mL,1) such that states in (ω∗∗
L ,ω∗∗

R ) induce expected

state mL and states in [0,ω∗∗
L ) ∪ (ω∗∗

R ,1] induce expected state mR. Moreover, there ex-

ists stochastically monotone bipooling (i.e., a higher state induces a higher lottery over

expected states with respect to first-order stochastic dominance), but then it is necessarily

nondeterministic. For example, there exists q∗∗ ∈ (0,1) such that states in [0,ω∗∗) induce

expected states mL and mR with probabilities q∗∗ and 1− q∗∗, and states in (ω∗∗,1] always

induce expected state mR.

We find that, under Condition 1, each optimal monotone signal is either a cutoff rule

or no disclosure (Parts 2 and 3 of Theorem 2), and it yields a strictly lower value than

the optimal unrestricted signal. In particular, the value of a cutoff rule with cutoff ω∗

is V (m∗
L)F (ω∗) + V (m∗

R)(1 − F (ω∗) < coV (E[ω]), and the value of no disclosure is

V (E[ω]) < coV (E[ω]). If (5) holds, then a cutoff rule dominates no disclosure (Figure

1c), and otherwise no disclosure dominates (Figure 1d).

5. APPLICATION TO MEDIA CENSORSHIP

We illustrate our results using the media censorship model of Kolotilin et al. (2022), who

characterize optimal media censorship under the following two assumptions. First, there is

a continuum of media outlets. Second, the distribution of citizens’ types is unimodal. Our

results allow to relax these two assumptions, one at a time. Theorem 1 yields a character-

ization of an optimal censorship policy when there is a finite (possibly small) number of

media outlets. Theorem 2 yields a characterization of an optimal censorship policy when

the distribution of citizens’ types is bimodal (i.e., society is polarized).

5.1. Model

There is a government and a continuum of heterogeneous citizens. The government’s

quality θ ∈ [0,1] has a distribution T with a strictly positive density on [0,1]. Citizens are
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indexed by r ∈ [0,1] that has a distribution V with a continuously differentiable density on

[0,1]. The utility of a citizen of type r is

u(ar, θ, r) = (θ− r)ar,

where ar ∈ {0,1} is the citizen’s action. The government’s utility is the aggregate action in

the society
󰁕 1
0 ardV (r).

Citizens obtain information about government’s quality θ through media outlets. Each

media outlet is identified by its editorial policy c ∈ [0,1], and it endorses action a = 1 if

θ ≥ c and endorses action a= 0 if θ < c. The set of media outlets C is a subset of [0,1].

The government’s censorship policy is a set of media outlets X ⊂ C that are censored.

The other media outlets in C\X are permitted to broadcast. The government’s problem

is to find an optimal censorship policy that maximizes its expected utility over censorship

policies X .

The timing is as follows. First, the government chooses a set X ⊂ C of censored media

outlets. Second, government’s quality θ is realized, and each permitted media outlet en-

dorses action a= 1 or a= 0 according to its editorial policy. Finally, each citizen observes

messages from all permitted media outlets, updates beliefs about θ, and chooses an action.

Kolotilin et al. (2022) solve the case with C = [0,1] (i.e., there is a continuum of me-

dia outlets) and an s-shaped V (i.e., the distribution of citizens’ types is unimodal). If it

was possible to design any signal about government’s quality θ, then deterministic upper

censorship with some cutoff θ∗ ∈ [0,1) would be optimal for the government. Thus, it is

optimal to censor all media outlets with editorial policies above θ∗, as this censorship pol-

icy implements upper censorship with cutoff θ∗. This approach is valid when C = [0,1]

and when the optimal unrestricted signal about θ is monotone. Our results allow to address

more general cases.

5.2. Reduction to Monotone Persuasion

We start by showing that the government’s problem of media censorship reduces to a

monotone persuasion problem with an appropriately defined state.

Consider a censorship policy X ⊂ C . Let yX be a random variable equal to the condi-

tional expectation of θ given messages from all media outlets in C\X . Let GX denote the
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distribution of yX . Each citizen of type r chooses ar = 1 iff r ≤ yX . Then, the aggregate

action is
󰁕 1
0 ardV (r) = V (yX), and the government’s expected utility is

󰁕 1
0 V (y)dGX(y).

Let GC denote the set of distributions GX induced by all censorship policies X ⊂C .

Define the state ω as the conditional expectation of θ given messages from all media

outlets in C . That is, ω = y∅ and its distribution is F =G∅. Consider a monotone signal µ,

which is an increasing function satisfying E[ω|µ(ω) =m] =m for all m. Let Gµ denote the

distribution of m= µ(ω). Then, the value of µ is
󰁕 1
0 V (µ(ω))dF (ω) =

󰁕 1
0 V (m)dGµ(m).

Let GM denote the set of distributions Gµ induced by all monotone signals µ.

The next proposition shows that an outcome is implementable by a monotone signal

iff it is implementable by a censorship policy. Thus, the government’s problem of media

censorship reduces to a monotone persuasion problem.

PROPOSITION 1: GC = GM .

We illustrate the intuition for Proposition 1 using an example with two media outlets

whose editorial policies are c1 and c2.

EXAMPLE 1: Let C = {c1, c2} with 0 < c1 < c2 < 1. There are three states, ω1 =

E[θ|θ ≤ c1], ω2 = E[θ|c1 ≤ θ ≤ c2], and ω3 = E[θ|θ ≥ c2]. There are four censorship poli-

cies, (i) X =∅, (ii) X = {c1}, (iii) X = {c2}, and (iv) X = {c1, c2}. They correspond to

four monotone signals, (i) full disclosure, (ii) pooling of states ω1 and ω2 and separation of

state ω3, (iii) separation of state ω1 and pooling of states ω2 and ω3, and (iv) no disclosure.

In particular, no censorship policy implements pooling of states ω1 and ω3 and separation

of state ω2.

5.3. Discrete Unimodal Case

Suppose that there is a finite number of media outlets (i.e., state ω is discrete), and that

the distribution of citizens’ types is unimodal (i.e., V is s-shaped). By Theorem 1, the

government optimally censors all media outlets whose editorial policies are above some

cutoff. That is, all censored media outlets are less supportive than all permitted media

outlets in that they endorse the government’s preferred action less frequently. To provide

the intuition, we discuss the effect of censoring the least supportive media outlet when there

are only two media outlets.
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EXAMPLE 1—continued: Relative to free media, by censoring media outlet c2, the gov-

ernment gains support of moderate types in (ω2,m
∗), where m∗ = E[θ|θ ≥ c1], when gov-

ernment’s quality θ is between c1 and c2, but it loses support of opponent types in (m∗,ω3)

when government’s quality θ is above c2. The gain exceeds the loss, because there are fewer

opponent types than moderate types, when the distribution of citizens’ types is unimodal.

The government may gain from using more sophisticated tools of media control than

media censorship. For example, the government may prefer to replace media outlets with

one government’s media outlet that aggregates information from media outlets, possibly

adding random noise. We now show that optimal media control may take intricate forms

even when there are only two media outlets.

EXAMPLE 1—continued: The optimal unrestricted signal may take the form of stochas-

tic upper censorship where state ω2 is separated with probability q ∈ (0,1). This signal is

implemented by letting media outlet c1 to broadcast freely and by randomly influencing

media outlet c2 as follows. With probability q, media outlet c2 broadcasts freely. With

probability 1 − q, media outlet c2 is forced to repeat the message of media outlet c1. In

turn, the optimal deterministic signal may pool states ω1 and ω3 and separate state ω2. This

signal is implemented by letting citizens observe only whether media outlets c1 and c2 send

the same message or not.

5.4. Continuous Bimodal Case

Suppose that there is a continuum of media outlets C = [0,1] (i.e., state ω is continuous

with distribution F = T ), and that the distribution of citizens’ types is bimodal (i.e., society

is polarized). For illustration, we restrict attention to the case where V is m-shaped and the

distribution of the government’s quality is sufficiently spread out in that Condition 1 holds.

The government either optimally censors all media outlets (Part 3 of Theorem 2) or per-

mits only one media outlet with a moderate editorial policy c∗ ∈ (0,1) (Part 2 of Theorem

2). It may seem counterintuitive that the government optimally censors not only the least

supportive media outlets (as in the unimodal case) but also the most supportive ones. Intu-

itively, the bimodal case corresponds to a polarized society where most citizens are either

supporters or opponents, rather than moderates. Thus, censoring most supportive media
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outlets ensures that supporters continue to choose the government’s preferred action even

if no permitted media outlets endorse it.

We now discuss two forms of optimal media control, which outperform optimal media

censorship. Let 0 < mL < mR < 1, 0 < ω∗∗
L < ω∗∗ < ω∗∗

R < 1, and q∗∗ ∈ (0,1) be as in

Section 4. The first form is deterministic but nonmotone. Citizens observe only whether

media outlets cL = ω∗∗
L and cR = ω∗∗

R send the same message or not. The second form is

stochastically monotone but nondeterministic. Citizens observe the message of only one

media outlet c = ω∗∗ that is randomly influenced as follows. With probability q∗∗, media

outlet c broadcasts freely. With probability 1− q∗∗, media outlet c is forced to endorse the

government’s preferred action, regardless of the government’s quality.

6. CONCLUSION

A lot of progress has been made on optimal persuasion when the objective is posterior

mean measurable. But little is known about optimal monotone persuasion, beyond when

optimal persuasion turns out to be monotone. Optimal persuasion can be nonmonotone

when the state is discrete, which requires randomization, or when the objective function is

irregular, which requires nonmonotone pooling. We provide two theorems that characterize

optimal monotone persuasion in most prominent such cases, so they can be used as off-the-

shelf results in follow-up work. Our proofs identify a candidate class of optimal monotone

signals and show that any monotone signal outside of this class is dominated by a signal in

this class. This approach can be applied more generally by suitably adjusting a candidate

class of optimal monotone signals.

We make a case for monotone persuasion in the context of media censorship. But there

are many other considerations that lead to monotone persuasion. For example, a nonmono-

tone grading policy that gives better grades to worse performing students may be viewed as

unfair or illegitimate and may be manipulated by strategic students. Moreover, the mono-

tonicity restriction may arise due to Mirrlees incentive constraints (e.g., Rayo 2013 and

Kolotilin and Li 2021). Finally, monotone persuasion is equivalent to deterministic del-

egation (see Kolotilin and Zapechelnyuk 2025), so our results are also relevant for the

delegation literature, which has primarily focused on deterministic mechanisms.
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APPENDIX A: PROOFS

A.1. Proof of Theorem 1

Let supp(F ) = {ω1, . . . ,ωn}, with natural n ≥ 2 and ω1 < . . . < ωn. For each 1 ≤ i <

j ≤ n, denote fj = f(ωj), fi:j = fi + . . .+ fj , and mi:j = (ωifi + . . .+ ωjfj)/fi:j .

LEMMA 1: Each optimal monotone signal is deterministic upper censorship.

PROOF: Suppose by contradiction that there exists an optimal monotone signal µ that is

not deterministic upper censorship. Then there exist 1≤ i < j < k ≤ n and two signal re-

alizations: mi:j that pools states {ωi, . . . ,ωj} and mj+1:k that pools states {ωj+1, . . . ,ωk}.

Let µ− and µ+ be monotone signals that differ from µ only in that µ− merges signal realiza-

tions mi:j and mj+1:k of µ into one signal realization mi:k and µ+ splits signal realization

mi:j of µ into two signal realizations: mi:j−1 and ωj . Denote the value of signals µ−, µ,

and µ+ by W−, W , and W+.

To obtain a contradiction, it suffices to show that W ≥W+ implies W <W−. So, sup-

pose that W ≥W+, which is equivalent to

V (mi:j)−
ωj −mi:j

ωj −mi:j−1
V (mi:j−1)−

mi:j −mi:j−1

ωj −mi:j−1
V (ωj)≥ 0. (6)

Since V is strictly convex on [0,ωM ] and (6) holds, it follows that ωM < ωj .

We now show that W <W−, which is equivalent to

V (mi:k)−
mj+1:k −mi:k

mj+1:k −mi:j
V (mi:j)−

mi:k −mi:j

mj+1:k −mi:j
V (mj+1:k)> 0. (7)

If ωM ≤ mi:j , then (7) follows from strict concavity of V on [ωM ,1]. So, suppose that

ωM ∈ (mi:j ,ωj). In summary, we have

mi:j−1 <mi:j < ωM < ωj <mj+1:k, and mi:j <mi:k <mj+1:k. (8)

Since V is strictly convex on [0,ωM ] and strictly concave on [ωM ,1], by (8), we have

ωM −mi:j

ωM −mi:j−1
V (mi:j−1) +

mi:j −mi:j−1

ωM −mi:j−1
V (ωM )− V (mi:j)> 0, (9)
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V (ωj)−
mj+1:k − ωj

mj+1:k − ωM
V (ωM )− ωj − ωM

mj+1:k − ωM
V (mj+1:k)> 0. (10)

mi:k −mi:j

mi:k −mi:j−1
V (mi:j−1) +

mi:j −mi:j−1

mi:k −mi:j−1
V (mi:k)− V (mi:j)> 0, if mi:k ≤ ωM ,

(11)

V (mi:k)−
mj+1:k −mi:k

mj+1:k − ωM
V (ωM )− mi:k − ωM

mj+1:k − ωM
V (mj+1:k)> 0, if mi:k ≥ ωM .

(12)

If mi:k ≤ ωM , then adding the inequalities (6), (9), (10), and (11) multiplied by (mj+1:k −
ωM )(mi:k − mi:j)(ωj − mi:j−1), (mj+1:k − ωj)(mi:k − mi:j)(ωM − mi:j−1), (mi:j −
mi:j−1)(mi:k −mi:j)(mj+1:k − ωM ), and (ωj − ωM )(mj+1:k −mi:j)(mi:k −mi:j−1), re-

spectively, yields (7). If mi:k ≥ ωM , then adding the inequalities (6), (9), (10), and (12) mul-

tiplied by (mj+1:k−mi:k)(ωj−mi:j−1)(ωM −mi:j), (mj+1:k−mi:k)(ωM −mi:j−1)(ωj−
mi:j), (mj+1:k−mi:k)(mi:j−mi:j−1)(ωM−mi:j), and (mj+1:k−mi:j)(mi:j−mi:j−1)(ωj−
ωM ), respectively, yields (7).

Intuitively, in either case (mi:k ≤ ωM or mi:k ≥ ωM ), we have four linear inequalities

((6), (9), (10), and (11) or (12)) with 6 variables (V (mi:j−1), V (mi:j), V (ωM ), V (ωj),

V (mj+1:k), and V (mi:k)). Fourier-Motzkin elimination of three variables (V (mi:j−1),

V (ωM ), and V (ωj)) yields one inequality (7) with 3 variables (V (mi:j), V (mj+1:k), and

V (mi:k)). Figure A.1 illustrates why (7) holds. Q.E.D.

We now show that the optimal deterministic upper censorship cutoff coincides with the

optimal stochastic upper censorship cutoff. For each z ∈ [ω1,ωn], define

j(z) = max{i ∈ {1, . . . , n} : ωi ≤ z},

q(z) =
z − ωj(z)

ωj(z)+1 − ωj(z)
,

m(z) =
(1− q(z))fj(z)ωj(z) +

󰁛
i>j(z)

fiωi

(1− q(z))fj(z) +
󰁛

i>j(z)
fi

,

W (z) =
󰁛

i<j(z)

fiV (ωi) + q(z)fj(z)V (ωj(z)) +

󰀕
(1− q(z))fj(z) +

󰁛
i>j(z)

fi

󰀖
V (m(z)).
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A

B

C

D

E

mi:j−1 mi:j ωM ωj mj+1:k m

V

FIGURE A.1.—Upper censorship when V is s-shaped

Note: Point B is above line AD, because W ≥W+. Point C is above line AB, because V is convex on [0,ωM ]. Point E is
below line CD, because V is concave on [ωM ,1]. Point (mi:k, V (mi:k)) is in the shaded area, because V is convex on [0,ωM ]
and concave on [ωM ,1]. Condition (7) states that the shaded area is above line BE.

Thus, every z ∈ [ω1,ωn] represents a stochastic upper censorship signal with (ωj(z), q(z)),

where m(z) is the expected state conditional on the pooling signal realization and W (z) is

the value of this signal. Conversely, every stochastic upper censorship signal with (ωj , q) in

{ω1, ...,ωn−1}× [0,1] can be represented by z = (1− q)ωj + qωj+1 ∈ [ω1,ωn].6 Also note

that z represents deterministic upper censorship iff z ∈ {ω1, ...,ωn}.

Observe that m(z) and W (z) are continuous by construction. Letting

∆(ω,m) = V (ω)− V (m)− V ′(m)(ω−m)

and taking the derivative of W (z) at z /∈ {ω1, . . . ,ωn}, we obtain

m′(z) =
q′(z)

󰁛
i>j(z)

fi(ωi − ωj(z))

󰀕
(1− q(z))fj(z) +

󰁛
i>j(z)

fi

󰀖2 =
q′(z)fj(z)(m(z)− ωj(z))

(1− q(z))fj(z) +
󰁛

i>j(z)
fi
,

W ′(z) = q′(z)fj(z)(V (ωj(z))− V (m(z)) +m′(z)
󰀓
(1− q(z))fj(z) +

󰁛

i>j(z)

fi

󰀔
V ′(m(z))

6An upper censorship with (ωn, q), for any q ∈ [0,1], is the same as the upper censorship with (ωn−1,1).
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= q′(z)fj(z)
󰀃
V (ωj(z))− V (m(z))− V ′(m(z))(ωj(z) −m(z))

󰀄

=
fj(z)

ωj(z)+1 − ωj(z)
∆(ωj(z),m(z)).

CLAIM 1: For all ω1 ≤ z < z′ < ωn, we have

∆(ωj(z),m(z))≤ 0 =⇒ ∆(ωj(z′),m(z′))< 0.

PROOF: Suppose by contradiction that ω1 ≤ z < z′ < ωn, ∆(ωj(z),m(z)) ≤ 0, and

∆(ωj(z′),m(z′)) ≥ 0. By definition, ωj(z) is increasing in z, m(z) is strictly increasing

in z, and ω(z) < m(z), for z ∈ [ω1,ωn). Thus, letting ω = ωj(z), ω′ = ωj(z′), m =m(z),

and m′ =m(z′), we have ω ≤ ω′, m<m′, ω <m, and ω′ <m′. By integration by parts,

󰁝 m

ω
V ′′(x)(x− ω)dx= V ′(x)(x− ω)

󰀏󰀏m
ω
−
󰁝 m

ω
V ′(x)dx

= V ′(m)(m− ω)− (V (m)− V (ω)) =∆(ω,m).

Since V is strictly convex on [0,ωM ] and strictly concave on [ωM ,1], we have V ′′(x)> 0

for almost all x ∈ [0,ωM ] and V ′′(x) < 0 for almost all x ∈ [ωM ,1]. So, since ω <m and

∆(ω,m) ≤ 0, we have m > ωM . Similarly, since ω′ < m′ and ∆(ω′,m′) ≥ 0, we have

ω′ < ωM . Then we obtain a contradiction

∆(ω′,m′) =

󰁝 m′

ω′
V ′′(x)(x− ω′)dx <

󰁝 m

ω′
V ′′(x)(x− ω′)dx

=

󰁝 m

ω′
V ′′(x)(x− ω)

x− ω′

x− ω
dx≤ ωM − ω′

ωM − ω

󰁝 m

ω′
V ′′(x)(x− ω)dx

≤ ωM − ω′

ωM − ω

󰁝 m

ω
V ′′(x)(x− ω)dx=

ωM − ω′

ωM − ω
∆(ω,m)≤ 0,

where the first inequality holds because ωM < m < m′ ≤ 1 and V is strictly concave on

[ωM ,1], the second inequality holds because V is convex on [0,ωM ], concave on [ωM ,1],

and (x−ω′)/(x−ω) is increasing in x, the third inequality holds because 0≤ ω ≤ ω′ < ωM

and V is convex on [0,ωM ], and the fourth inequality holds because ∆(ω,m)≤ 0. Q.E.D.
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Since fj(z)/(ωj(z)+1 − ωj(z))> 0, Claim 1 implies that W ′(z) is strictly single crossing

from above on [ω1,ωn). This implies that the optimal unrestricted signal is unique and

is stochastic upper censorship with some cutoff ω∗. Furthermore, this implies that each

optimal monotone signal is deterministic upper censorship with the same cutoff ω∗ and

some q∗∗ ∈ {0,1}. Q.E.D.

A.2. Proof of Theorem 2

It is convenient to represent a monotone signal by a pooling set P ⊂ [0,1] of states

that are not separated by this signal. Since the state is continuous, w.l.o.g., each pooling

interval is open. Thus, the pooling set is a union of some disjoint nonempty open intervals,

P =
󰁖

i(ωi,ωi).7 A pooling set P corresponds to the monotone signal µP given by

µP (ω) =

󰀻
󰀿

󰀽
ω, ω /∈ (ωi,ωi) for all i,

mi, ω ∈ (ωi,ωi) for some i,

where mi = E[ω|ω ∈ [ωi,ωi]]. The distribution GP of µP (ω) is given by

GP (ω) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

F (ω), if ω /∈ (ωi,ωi) for all i,

F (ωi), if ω ∈ (ωi,mi) for some i,

F (ωi), if ω ∈ [mi,ωi) for some i.

Solving the monotone persuasion problem is thus equivalent to finding an optimal pooling

set P that maximizes
󰁕 1
0 V (ω)dGP (ω).

LEMMA 2: Each optimal pooling set P takes one of the following forms:

1. Interval disclosure P = [0,ω∗
L)∪ (ω∗

R,1] with m∗
L < ωL < ω∗

L < ω∗
R < ωR <m∗

R.

2. Cutoff rule P = [0,ω∗)∪ (ω∗,1] with m∗
L < ωL < ωR <m∗

R.

3. No disclosure P = [0,1].

PROOF: We start with two simple claims.

7We define open sets in [0,1] rather than in R; e.g., [0,1/2)∪ (1/2,1] is open.
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CLAIM 2—Kolotilin et al. (2022): Let P be an optimal pooling set.

1. If V is strictly concave on [0,1], then P = [0,1].

2. If V is s-shaped on [0,1], then P = (ω∗,1], with ω∗ < ωM < E[ω|ω ∈ [ω∗,1]].

PROOF: Parts 1 and 2 follow from Corollary 1 and Theorem 1 in Kolotilin et al. (2022).

Q.E.D.

CLAIM 3: Each optimal pooling set P has the following properties.

1. Each separating interval [ωi,ωi+1], with ωi < ωi+1, is such that [ωi,ωi+1]⊂ [ωL,ωR].

2. There is at most one pooling interval (ωi,ωi), with ωi < ωi, such that mi ∈ [0,ωL].

PROOF: To prove Part 1, suppose by contradiction that either ωi < ωL or ωi+1 > ωR.

Then a pooling set that differs from P only in that it pools all states in (ωi,ωL) or

(ωR,ωi+1) yields a strictly higher value by Part 1 of Claim 2, as V is strictly concave

on [0,ωL] and [ωR,1].

To prove Part 2, suppose by contradiction that there are two pooling intervals (ωi,ωi)

and (ωj ,ωj), with ωi ≤ ωj , such that mi,mj ∈ [0,ωL]. Then a pooling set that differs from

P only in that it pools all states in (ωi,ωj) yields a strictly higher value by Part 1 of Claim

2, as V is strictly concave on [0,ωL] and the support of GP conditional on (ωi,ωj) is a

subset of [0,ωL]. Q.E.D.

Suppose by contradiction that an optimal P does not take Form 1, 2, or 3. If there is a

separating interval [ωi,ωi+1], with ωi < ωi+1, then P = [0,ωi) ∪ (ωi+1,1], which is Form

1, leading to a contradiction. Indeed, by Part 1 of Claim 3, we have [ωi,ωi+1]⊂ [ωL,ωR].

By Part 2 of Claim 2, we have P ∩ [ωi,1] = (ωi+1,1], as V is s-shaped on [ωi,1]⊂ [ωL,1].

Analogously, P ∩ [0,ωi+1] = [0,ωi).

Next, suppose that there is no separating interval. Since P does not take Forms 2 or 3,

P has two pooling intervals, (ωi,ωi) and (ωi+1,ωi+1), with ωi = ωi+1, and mi ≥ ωL or

mi+1 ≤ ωR. W.l.o.g., suppose mi+1 ≤ ωR. By Part 2 of Claim 3, mi+1 > ωL. By Part 2 of

Claim 2, ωi+1 < ωL. In summary, we have

mi < ωi = ωi+1 < ωL <mi+1 ≤ ωR.
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Let ω = ωi = ωi+1. Since P is optimal, the marginal effect of changing ω should be 0, so,

letting

V̂ (x) = V (mi)(F (x)− F (ωi)) + V (mi+1)(F (ωi+1)− F (x)), and

δ(x) = V (mi) + V ′(mi)(x−mi)− V (mi+1)− V ′(mi+1)(x−mi+1),

we have

V̂ ′(ω) = V ′(mi)
dmi

dω
(F (ω)− F (ωi)) + V ′(mi+1)

dmi+1

dω
(F (ωi+1)− F (ω))

+(V (mi)− V (mi+1))f(ω)

= [V (mi) + V ′(mi)(ω−mi)− V (mi+1)− V ′(mi+1)(ω−mi+1)]f(ω) = δ(ω)f(ω) = 0.

Thus, V̂ ′(ω) = 0 iff δ(ω) = 0. Since V is strictly concave on [mi,ωL] ⊂ [0,ωL] and

strictly convex on [ωL,mi+1] ⊂ [ωL,ωR], we have V (mi) + V ′(mi)(ωL −mi) > V (ωL)

and V (mi+1) + V ′(mi+1)(ωL −mi+1)< V (ωL), respectively. Thus,

δ(ωL) = V (mi) + V ′(mi)(ωL −mi)− V (mi+1)− V ′(mi+1)(ωL −mi+1)> 0.

Next, since δ(x) is linear in x and mi < ω < ωL, we have

δ(mi)< δ(ω) = 0< δ(ωL). (13)

Since δ(mi) = (mi+1 −mi)V
′(mi+1) + V (mi)− V (mi+1), by (13), we have

V ′(mi+1)<
V (mi+1)− V (mi)

mi+1 −mi
. (14)

Let

ν(x) = V (x)− mi+1 − x

mi+1 −mi
V (mi)−

x−mi

mi+1 −mi
V (mi+1).

We have

ν ′(x) = V ′(x)− V (mi+1)− V (mi)

mi+1 −mi
.
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mi ω ωL mi+1
m

V

A
B

C

FIGURE A.2.—Interval disclosure when V is m-shaped.

Note: The tangents to V at points A and B intersect at point C , because δ(ω) = 0. Condition ν(x)> 0 for x ∈ (mi,mi+1)
states that V is above line segment AB.

Since V is strictly concave on [mi,ωL] ⊂ [0,ωL] and strictly convex on [ωL,mi+1] ⊂
[ωL,ωR], V ′(x) is strictly quasiconvex on [mi,mi+1], and so is ν ′(x). Moreover, by (14),

ν ′(mi+1)< 0. Hence, ν ′(x) is strictly single crossing from above on [mi,mi+1]. Thus, ν(x)

is strictly quasiconcave on [mi,mi+1]. By ν(mi) = ν(mi+1) = 0, it follows that ν(x) > 0

for all x ∈ (mi,mi+1). Figure A.2 illustrates why ν(x)> 0. Hence, a pooling set that differs

from P only in that it pools all states in (ωi,ωi+1) yields a strictly higher value, leading to

a contradiction. Q.E.D.

By Proposition 3 in Kolotilin (2018), P = [0,ω∗
L) ∪ (ω∗

R,1], with ωL < ω∗
L < ω∗

R < ωR,

is optimal iff (2) and (3) hold. Moreover, by Lemma 2, m∗
L < ωL and m∗

R > ωR. So, Part 1

of Theorem 2 follows. If such ω∗
L < ω∗

R do not exist, then P takes Form 2 or 3 of Lemma

2. Clearly, P = [0,1] is suboptimal iff (5) holds for some ω∗ ∈ (0,1). Moreover, if P =

[0,ω∗) ∪ (ω∗,1] is optimal, then (4) holds, and m∗
L < ωL and m∗

R > ωR by Lemma 2. So,

Parts 2 and 3 of Theorem 2 follow. Q.E.D.

A.3. Proof of Proposition 1

Let X ⊂C . For each ω ∈ [0,1], define

cX(ω) = sup ({c ∈C\X : c≤ ω}∪ {0}) , cX(ω) = inf ({c ∈C\X : c > ω}∪ {1}) ,
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and µ(ω) = E[θ|θ ∈ [cX(ω), cX(ω)]].

Observe that µ is a monotone signal such that Gµ =GX . Thus, GC ⊂ GM .

Conversely, let µ be a monotone signal. For each m such that µ(ω) =m for some ω ∈
supp(F ), define

xµ(m) = inf {ω ∈ supp(F ) : µ(ω) =m} , xµ(m) = sup{ω ∈ supp(F ) : µ(ω) =m} ,

and X =
󰀓󰁞

m∈µ(supp(F ))
(xµ(m), xµ(m)]

󰀔󰁟
C.

Observe that X is a censorship policy such that GX =Gµ. Thus, GM ⊂ GC . Q.E.D.


